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In this work we investigate buoyant particle dynamics in the ocean mixed layer (OML)
under a purely convective regime. We focus on noninertial particles that are lighter than the
surrounding seawater (thus, buoyant), which is a useful configuration when representing
oil, microplastic debris, and other buoyant materials that do not necessarily exhibit strong
inertial effects. Our main goal is to understand and describe the physical mechanisms that
control the buoyant particles’ surface concentration under such conditions, specifically the
preferential concentration effects that arise independently of inertia (rather than the well-
known centrifuging mechanism for heavy particles). In our investigation we use large-eddy
simulation to model the particle dispersion in the OML in which the evolution of the particle
field is simulated using an Eulerian approach. We find that in addition to the preferential
concentration effect that clusters particles into convergence regions on the surface (which
is a well-known and straightforward effect on free surfaces), there is a secondary effect for
highly buoyant particles that drives them into vorticity-dominated regions. We explain this
effect as the advection of buoyant particles by persistent vortices in the flow, which turns out
to be the dominating mechanism controlling the surface particle distribution. Highly buoyant
particles are trapped in the interior of the vortices (at the surface), which favors clustering in
vorticity-dominated regions, while for particles with low buoyancy this effect is negligible.
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I. INTRODUCTION

The near-surface portion of the ocean, namely, the ocean mixed layer (OML), is strongly influenced
by the dynamic processes induced by the atmospheric forcing and is generally weakly stratified and
well mixed [1]. It is also usually an important destination for positively buoyant particles, which tend
to rise to the surface, often becoming trapped in it. This makes the evolution of buoyant particles in the
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OML an important subject, with various relevant applications such as transport of ocean debris [2–4],
oil spills [5,6], and bubble dynamics [7]. Considering, as an example, the case of oil spills, a thorough
understanding of the basic physics and underlying dynamics is vital, since the fate of oil plumes in
the ocean surface must be often rapidly predicted using physics-based models. The present work
focuses on the dynamics of buoyant particles in the OML under purely convective conditions, with an
emphasis on small-scale three-dimensional turbulence in the absence of mesoscale and submesoscale
features. Despite its importance and despite there have been several recent investigations focusing
on small-scale turbulence effects [4–6,8–11] and submesoscale phenomena [12–14], the evolution
of buoyant particles in the OML under such conditions has not been addressed in detail to date.

In order to illustrate the precise scope of this work, consider the approximate particle velocity
equation [15,16]

v = u + wr e3 + wr

g

dv

dt
, (1)

where v is the total particle velocity, u is the flow velocity, wr is the particle terminal rise velocity
(we assume wr > 0, i.e., the particles are less dense than the carrier fluid), g is the gravitational
acceleration, t is the time, and e3 is the unit vector in the vertical upward-pointing direction (more
details on the approximations that lead to this simplified equation are discussed in Sec. III). The
first two terms on the right-hand side are the particle advection by the flow and the terminal rise
velocity that comes from the balance between buoyancy and drag forces. The third term corresponds
to inertial effects and can generally be approximated by wrg

−1Du/Dt after an expansion in particle
timescale [15,16], where D(·)/Dt is the material derivative. We are interested in flows for which the
third term on the right-hand side of Eq. (1) is small compared to wr , i.e., cases in which the condition
g−1dv/dt � 1 is satisfied. These are particles whose velocity is dominated by flow advection and
buoyancy effects, but with comparably weak inertial effects. In the OML this often includes oil
droplets, microplastic debris, bubbles, etc.

The omission of the inertial term allows us to focus our attention on a form of preferential
concentration that arises independently of particle inertia. This effect is illustrated in the case of a
purely convective flow represented in Figs. 1(a)–1(c), which shows the particle concentration field C

obtained via large-eddy simulation (LES) using an Eulerian approach (whose details will be given in
Sec. III). In all cases displayed we use noninertial particles with increasing buoyancy from Fig. 1(a)
to Fig. 1(c). It is clear from the figures that there is preferential concentration of particles in zones
of horizontal convergence, shown in Fig. 1(d) by regions of negative normalized divergence D,
defined as

D = 1

〈|S|〉vt

(
∂u

∂x
+ ∂v

∂y

)∣∣∣∣
z=0

, (2)

while there is significantly low concentration in divergence regions where D is positive. In Eq. (2),
S = 1

2 [∇u + (∇u)T ] is the three-dimensional strain rate tensor and 〈·〉vt denotes a Reynolds average
which is approximated for practical purposes as a volume and time average. This particular effect
(referred to here as the primary preferential concentration effect) is expected and qualitatively simple
to understand as the result of downwelling plumes. Particles with very low or no buoyancy are easily
submerged in the surface convergence regions due to downwelling and thus can resurface in the
divergent upwelling regions. This tends to homogenize the surface particle distribution since this
process effectively provides a communication channel between areas of convergence and divergence
at the surface. Particles with higher buoyancy are not as easily submerged and thus do not experience
as effectively this communication between downwelling and upwelling zones. Therefore, the main
effect of the flow on particles with high buoyancy is to expel them from the divergence zones and into
the convergence zones, where they tend to remain “trapped” for the most part while more particles
are collected into the same convergent region.

There is an additional preferential concentration effect (referred to here as secondary) which can
be noted by analyzing the horizontal scales of the surface particle distributions in Fig. 1. Notice
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(a)

(c) (d)

(b)

FIG. 1. Normalized surface concentrations for particles (a) C0.19, (b) C0.44, and (c) C1.21 (in order of
increasing buoyancy) and (d) horizontal divergence D at the surface. Here h is the OML depth and all panels
correspond to the same instant in time; C∗ is a concentration scale, whose details will be given in Sec. III.

that, because of the mechanism just described above, particles in Figs. 1(a) and 1(b) are arranged
following the convective cells shown in Fig. 1(d), making the horizontal scales of the distributions seen
in Figs. 1(a) and 1(b) and Fig. 1(d) similar. Conversely, the highly buoyant particles in Fig. 1(c) are
organized in a significantly larger horizontal scale than both the convective cells and the particles with
lower buoyancy, being mostly concentrated in much smaller regions. This is exactly the secondary
preferential concentration effect, which is not as straightforward to explain as the primary one and
which becomes evident only for particles with “high buoyancy” and after being advected by the
flow after a “certain time” (the precise definition of these terms will become clear in Sec. IV B).
We later argue that this is the effect of small-scale vertical vortices, which tend to collect particles
in convergent regions of high vorticity. Since inertial effects would introduce a similar preferential
concentration behavior (centrifuging [17]), inertia was not considered in order to fully isolate this
effect. Note that for both preferential concentration effects, the resulting behavior is for tracerlike
particles to be mostly homogenized in the OML, while floaterlike particles are clustered together in
isolated regions on the surface.

To date, most studies that dealt with particles in the OML considered either neutrally buoyant
particles, which we refer to as tracers, or purely two-dimensional (2D) surface-moving particles,
which we refer to as floaters (e.g., Ref. [10]). Although many scalars of interest may be approximated
by one of those limiting cases, there are many instances for which such an approximation is not
possible. In fact, earlier works that explored the range in between tracers and floaters showed that
particle distributions in the OML strongly depend on the particle’s terminal rise velocity [4–6,11].
The precise dependence, however, appears to have to be investigated on a case-by-case approach
for different flow configurations given that the dominating flow structures depend on the forcing
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mechanisms that drive the flow (e.g., convective plumes produce significantly different patterns
from Langmuir cells, which themselves are different from patterns in wind-shear-driven flows). In
this work we focus on particle dispersion in a convection-driven OML, which is a regime that has
been somewhat unexplored by recent literature (an exception is the work by Mensa et al. [10]).

We proceed to define the goals of this work. The first one is to quantify both the primary and
secondary preferential concentrations under a free-convection regime for particles with different
buoyancies. The second objective is to use these quantifications to understand and describe the
mechanisms that lead to the secondary preferential concentration of particles (the primary preferential
concentration is fairly straightforward to understand, so there is no need to focus on it).

The paper is organized as follows. In Sec. II we review the basic physics that govern the dispersion
on buoyant particles in the OML. In Sec. III we describe the numerical model used to obtain our
results. In Sec. IV the results are presented and discussed in detail. Flow characteristics are described
in Sec. IV A and the mechanism responsible for the secondary preferential concentration effect is
described in Sec. IV B. We present a summary in Sec. V.

II. ANALYTIC CONSIDERATIONS

In this section we briefly review some basic physical properties and analytical results that will aid
us in the following sections. Throughout the paper we adopt the usual notation that a variable A can
be separated into a Reynolds average 〈A〉 and a turbulent fluctuation A′. For practical purposes 〈·〉 is
calculated as a horizontal and time average unless otherwise noted with a subscript and a comment.
As mentioned, we neglect the inertial effects on the particles, which is justified in Sec. III B. Thus,
we can rewrite Eq. (1) without the inertial term as

v = u + wr e3. (3)

Both Eqs. (1) and (3) are the result of several other assumptions about the nature of the particles’
interaction with the flow. First, we assume that the particle volume fraction is always small enough to
make particle feedback on the flow negligible, but large enough to make an Eulerian approach valid
[15]. Furthermore, we consider that the size of the particles is smaller than the Kolmogorov scales of
the flow, which allows us to neglect several effects that would be costly to model [16]. We use x and
y for horizontal planes and set z = 0 at the ocean surface with z decreasing to negative values below
the surface. Given these assumptions, we neglect effects such as Brownian motion, history force,
thermophoresis, subgrid-scale (SGS) fluid stress force, Faxen effects, lift force, and virtual-mass
effects, similar to simplifications made in several other studies [7,16]. Thus, the only effects that we
assume to be important and that are included in Eq. (3) are gravity, drag, and buoyancy, which are
accounted for by the parameter wr .

Now we consider the surface particle concentrations in Fig. 1. Since both the primary and
secondary preferential concentration effects happen even when the initial condition is a uniform
concentration in the OML, we can understand them as the effect of a divergence introduced in the
particle velocity field, given that preferential concentration of a scalar that is initially well mixed
only happens when its velocity field is divergent [10]. Given that the flow is solenoidal at all points
and that the terminal rise velocity is zero at z = 0 [which can be taken into account by using the
Heaviside step function H (−z) along with wr ], one can obtain a measure of the divergence of the
particle velocity field by applying the divergence operator on Eq. (3) as

∇ · v = ∇ · u + wr

∂

∂z
H (−z) = wrδ(−z), (4)

where δ(−z) is the Dirac delta function [note that δ(−z) has units of m−1]. It is clear from Eq. (4)
that passive tracers follow a three-dimensional nondivergent velocity field, while for any other case
the velocity field is divergent at the surface (proportionally to wr ). At the other extreme is the floater
regime, which can be understood as wr → ∞. Although not directly inferred from Eq. (4), it is
possible to show (using the conservation of mass of a buoyant scalar) that in this case the divergence
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of the particles’ velocity field is proportional to the two-dimensional horizontal divergence at the
surface (since all the mass concentrates at the surface). Thus, we can regard wr as a parameter
characterizing the continuous range between the purely solenoidal 3D and the divergent 2D particle
velocity field cases.

At this point, it is important to make a clear distinction between the preferential concentration
mechanism identified here and the well-known case for inertial particles [8,17,18]. In both cases,
the preferential concentration arises from a divergence in the particle velocity field. However, while
in the case for inertial particles this divergence source arises from an inertial term in v, in our case
it comes solely from the discontinuity in the terminal rise velocity wr at the free surface. Thus, the
mechanism in our case is not connected to any inertial effects and the only necessary conditions for
it to take place are that the particles must have buoyancy, the flow must have a free surface where
the particle terminal rise velocity is zero, and this surface should have a free-slip condition.

Based on the fact that wr dictates the divergence of the particle velocity field, we introduce the
floatability parameter β, which is an estimate of the physical balance between wr (a tendency of
particles to rise to the surface) and w∗ (the eddies’ tendency to submerge particles). Here β is defined
as

β = wr

w∗
, (5)

where w∗ is the Deardorff convective velocity [19]

w∗ = (gα〈w′θ ′〉s |h|)1/3 = (B0|h|)1/3, (6)

α is the thermal expansion coefficient, w′ is the vertical velocity fluctuation, θ ′ is the temperature
fluctuation, h is the OML depth, B0 is the outward buoyancy flux at the surface, and 〈·〉s denotes
a Reynolds average at the surface (approximated for practical purposes as a horizontal and time
average). Throughout this work we focus on interpreting the results in terms of β, rather than wr , in
order to render the results more general and scalable among different free-convection conditions.

III. SIMULATIONS

A. The LES description

We use LES to numerically investigate the phenomena introduced in the preceding sections
with a code that has been applied successfully in other works [5,6]. The main equations are the
filtered three-dimensional incompressible Navier-Stokes equations with the Lilly-Smagorinsky eddy
viscosity model for the SGS closure [20,21]. In our equations Coriolis effects and particle feedbacks
on the flow are excluded (see Sec. III B). The Smagorinsky coefficient is determined dynamically
during the simulation using the Lagrangian-averaged scale-dependent dynamic SGS model [22].
The seawater density is assumed to have a linear dependence on the temperature θ and the SGS heat
flux closure is achieved by specifying a turbulent SGS Prandtl number (here taken as PrSGS = 0.4).
For more details about the equations and the code used, the reader is directed to Sec. 2 of Ref. [16],
keeping in mind the fact that in this work we ignore the Stokes vortex force, the Coriolis acceleration,
and particle-induced forces on the flow (i.e., the particle field is transported passively). The particle
mass concentration is described by an Eulerian scalar field whose evolution is governed by (here a
tilde denotes a grid-resolved variable)

∂C̃

∂t
+ ∇ · (ṽC̃) = −∇ · πC, (7)

where πC = ũC − ũC̃ is the SGS flux of particle concentration, molecular diffusion is neglected
owing to the dominant effects of turbulence at the scales of the LES, and ṽ is the resolved velocity
of the particle field, given by

ṽ = ũ + wr e3, (8)

which is the grid-filtered version of Eq. (3).
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TABLE I. Simulation parameters used in this work. The eddy turnover time is defined as T∗ = |h|/w∗,
where the convective velocity w∗ is defined in Eq. (6).

Name (notation) Values

dimensions Lx × Ly × Lz 1000 × 1000 × 120 m3

grid points Nx × Ny × Nz 320 × 320 × 150
spatial resolution �x × �y × �z 3.125 × 3.125 × 0.8 m3

time step �t 0.4 s
surface heat flux Q0 150 W m−2

mixed layer depth h −80 m
convective velocity w∗ 1.778 × 10−2 m s−1

eddy turnover time T∗ 1.25 h

The flow and temperature fields are solved on a collocated grid in the horizontal direction and a
staggered grid in the vertical direction. A pseudospectral method is used in the horizontal direction
and a second-order central finite-difference method is used for the vertical derivatives. We use a
finite-volume method to solve the Eulerian particle evolution [23]. The scheme is advanced in time
using a second-order Adams-Bashforth scheme along with a projection method (by constructing and
solving a pressure Poisson equation) to enforce the no-divergence condition. More details of the
basic LES solver can be found in Refs. [5,11,16].

B. Simulation setup

We focus on a simplified case of an OML flow in a free-convection scenario. Surface wind stress,
Coriolis, and wave effects are not considered and the only forcing is an upward heat flux (ocean
cooling) of 150 W m−2 at the surface, which is considered moderate for nighttime conditions for
midlatitude oceans. It is worth noting that a test case was run including the Coriolis acceleration
which produced virtually no difference in the bulk characteristics of the resulting flow (which we
attribute to the fact that there is no mean flow, only fast-changing turbulent flow). Given this test
result, we proceeded only with the simulation without Coriolis force for simplicity.

Simulations were run on a 320 × 320 × 150 grid spanning 1000 × 1000 × 120 m3 with a time
step of 0.4 s. An initial mixed layer depth h = −80 m was imposed at the beginning and was
enforced by a two-step temperature gradient in the thermocline characterized by ∂〈θ̃〉/∂z = 0, 0.1,
and 0.02 K m−1 in the ranges z/h < 0.95, 0.95 � z/h � 1.05, and 1.05 < z/h, respectively. The
depth of the thermocline was monitored and verified to not change significantly during the statistical
sampling period. In all the statistical steady-state results presented, the calculated OML depth
(inferred by the location of the negative peak of 〈w′θ ′〉) was approximately h ≈ −79 m. We use
a sponge layer at the bottom of the domain and a free-slip condition at the top, as well as a no-flux
condition for the particle concentration at z = 0. Table I presents a summary of the simulation
parameters.

In terms of grid convergence we note that simulations that use a Lagrangian scale-dependent
dynamic model have been shown to converge at coarser resolutions than simulations using a constant-
coefficient Smagorinsky model [24,25]. In the case of Salesky et al. [25], who used a modified
version of the same code used here, convergence was achieved with |h|/�f = 43 (see the Appendix
in Ref. [25]), where �f = (�x�y�z)1/3. In our simulation |h|/�f = 40, which is close enough to
the value obtained by Salesky et al. [25] so that grid convergence can be safely assumed. It is worth
noting that, for highly buoyant particles, the concentration close to the surface decays over a depth
shorter than our vertical resolution can resolve. However, resolving this decay is not critical since we
are interested mainly in the horizontal patterns of particle concentration for which only the horizontal
particle motions need to be well resolved. Since the horizontal velocities are not influenced by wr ,
we conclude that the horizontal advection of particles is resolved with enough accuracy.
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TABLE II. Particle terminal rise velocities, floatabilities β, and their associated droplet sizes considering
oil as the particle. The association with diameter is done within 5 μm of accuracy.

Parameter C0.00 C0.01 C0.05 C0.19 C0.30 C0.44 C0.59 C0.78 C1.21 C1.75 C3.11

wr (mm s−1) 0 0.216 0.864 3.45 5.40 7.77 10.58 13.82 21.59 31.09 55.27
β 0 0.0121 0.0486 0.194 0.304 0.437 0.595 0.777 1.21 1.75 3.11
equivalent oil droplet diameter 0 50 100 210 270 340 410 500 710 950 1000

(μm)

We also note that our previous assumption that inertial effects can be neglected is supported by
our estimate of the Stokes number St� ≈ 10−4, which is based on the smallest resolved eddies of
the LES. Here the Stokes number is defined as the ratio between the characteristic timescale of the
particles to the characteristic timescale of the flow. When obtaining these scales, the flow timescale
was estimated using the magnitude of the strain-rate tensor (which is similar to the magnitude of the
vorticity vector) and the particle timescale was estimated using Eq. (A5) from Yang et al. [16].

The simulation was allowed to spin up for approximately 45 eddy turnover times, after which the
flow was verified to be in statistical steady state before the particle concentration field was initialized.
Here an eddy turnover time is defined as T∗ = |h|/w∗. Although rigorously there is no steady state
for penetrative convective flows due to the constant entrainment of thermocline water, we found
that for the total simulation time the entrainment rate was small enough that steady state could be
assumed for statistical analysis as long as the averaging period was not much longer than around
four eddy turnover times.

The particle concentration field was initialized with a uniform unit-valued concentration in the
OML. We use 11 different particle cases, which are given in Table II, where each simulated case is
denoted by CX, where X is the floatability β. Using this nomenclature the cases are C0.00, C0.01,
C0.05, C0.19, C0.30, C0.44, C0.59, C0.78, C1.21, C1.75, and C3.11.

Considering practical applications, we connect the particle velocity for each case with oil droplets
sizes using the empirical correlations presented in Refs. [26,27], which take into account the fact
that both the Reynolds number and the drag coefficient change as the droplet size changes. We take
oil as having density ρd ≈ 859.87 kg m−3, thus, in seawater, a higher value of the rise velocity wr

necessarily implies a larger droplet. The droplet sizes are given in Table II up to 5 μm of accuracy
for readability purposes (more accurate droplet sizes can be obtained from the rise velocities also
presented in Table II). It is worth mentioning that although it is common for oil from spills to have a
significant fraction of its mass in droplets with diameter d larger than 1 mm [28,29], droplet C3.11
is already well into a floater regime for our flow configurations, so having extra droplets with higher
rise velocity would not impact the results presented here. Thus, the range of our rise velocities does
not limit the application of our results for the case of oil spills, making it possible for some of the
results presented to be extended to such cases.

After the particle concentration initialization the simulation with the particle concentration field
was run for approximately 26 eddy turnover times. We considered the particle distribution to be in
statistical steady state after about 20 eddy turnover times (approximately one day) and all steady-state
particle-related statistics were computed for the period consisting of approximately the last 4.5 eddy
turnover times. It is important to note that the duration of our simulation is within reasonably expected
ocean timescales. Since long periods dominated by convection are not uncommon in the ocean
[30,31], we believe that our simulation of the flow can be representative of real oceanic conditions.

IV. RESULTS AND DISCUSSION

For the sake of readability we omit the tilde to indicate grid-resolved variables from now on
and define the normalized time as t∗ = t/T∗ with t∗ = 0 at the moment of particle concentration
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FIG. 2. Joint probability density function of the horizontal divergence D [see Eq. (2)] and the Okubo
parameter Q [see Eq. (9)] for the flow field at the surface. The labels in each of the quadrants defined by the
red lines are the flow classifications according to Okubo [32].

initialization. We start by first characterizing relevant flow characteristics and then proceed to particle-
specific results.

A. Characterization of the flow

In this section we characterize the topology of the surface flow, which will be important when
analyzing the horizontal buoyant particles’ distribution in steady state. We leave the characterization
of statistical variables to the Appendix. In Fig. 2 we show the joint probability density function of
the normalized horizontal velocity divergence D and the normalized Okubo parameter Q, defined
as [32]

Q = 1

〈|S|2〉 vt

⎡
⎢⎢⎢⎣

(
∂u

∂x
− ∂v

∂y

)2

︸ ︷︷ ︸
stretching

+
(

∂u

∂y
+ ∂v

∂x

)2

︸ ︷︷ ︸
shearing

−
(

∂v

∂x
− ∂u

∂y

)2

︸ ︷︷ ︸
vorticity

⎤
⎥⎥⎥⎦

z=0

(9)

for the surface flow in steady state, where only the horizontal components are taken into account.
We refer to Q as the Okubo parameter to make the explicit distinction from the Okubo-Weiss
parameter [32,33]. The Okubo-Weiss parameter and the Okubo parameter are obtained through the
same reasoning and have similar physical meaning and formulation, the main difference being that
the Okubo-Weiss parameter is simplified for two-dimensional incompressible flows (following the
work of Weiss [33]), which greatly simplifies analyses. We base ourselves only in the work of Okubo
[32], which did not make any assumptions about compressibility. We find it appropriate to note at this
point that regions of Q > 0 can be understood as being strain dominated, while regions of Q < 0 are
equivalent to vorticity-dominated areas, which we call spirals following the nomenclature of Okubo
[32].

The red lines in Fig. 2 are the curves Q = 0, D = 0, and Q = D2, which define the major flow
types according to Okubo [32]: convergent nodes, saddles, and spirals, and divergent nodes, saddles,
and spirals as indicated in their respective regions in Fig. 2. We formalize this classification by
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FIG. 3. Detail of (a) a strong vertical vortex and (b) several vertical vortices in a small region of the simulation
domain. The color contours shown at the top surface are the 2D Okubo parameter Q and the isosurface is a
surface of constant 3D Okubo-Weiss parameter Q3D.

denoting different regions by a set of symbols collectively denoted by P , where P can assume values
P = I,II, . . . ,VI, respectively, depending on the values of D and Q at any given point x and time
t . The meaning of I, II, ..., VI is listed in Fig. 2. In his original paper, Okubo [32] presented other
classifications that happen when the (Q,D) pair falls exactly on the red lines in Fig. 2. Since this
virtually never happens numerically, we omit those from our analysis. More details regarding this
classification of points can be obtained in Ref. [32].

When analyzing Fig. 2, it is clear that points that have small values of both Q and D are
significantly more common than points in the extreme (note that the color bar is in logarithmic
scale). Furthermore, we see that points that are strain dominated (Q > 0) have higher probability
density than their vorticity-dominated counterparts. Finally, while there are some cases of convergent
vorticity-dominated areas (III, convergent spirals), there are significantly fewer cases of divergent
vortical regions (VI). This is due to vortex stretching, which amplifies vorticity in the downwelling
(convergent) regions and has an opposite effect for upwelling. It is worth noting that convergent
regions are colder with respect to their vicinity. This is the case because convection is the only
forcing, thus a negative buoyancy anomaly is the general cause for downwelling, which coincides
with convergence at the surface.

Furthermore, although convergent spirals are significantly less common than strain-dominated
zones, their persistence time is much longer than types of surface flow structures, which was verified
to be true for our case by visual inspection (but is a well-known behavior in 2D turbulence [34,35]).
This can be understood by noting that the great majority of convergent spirals at the surface (negative
peaks in Q) are actually one end of a 3D vortex tube that extends downward from the surface. One
example can be seen in Fig. 3(a), in which the surface colormap is the Okubo parameter Q [Eq. (9)]
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and the isosurfaces shown are surfaces of constant Q3D. Here Q3D is one of the three-dimensional
tensor invariants of the flow [36] normalized by the strain rate

Q3D = 1

〈|S|2〉vt
(|S|2 − |�|2), (10)

where � = 1
2 [∇u − (∇u)T ] is the rotation tensor. Note that Q3D is the three-dimensional analog

of the Okubo [32] parameter Q and it is defined here with the opposite sign as it is generally used
in the 3D turbulence literature [36,37] in order to agree with Eq. (9) in a 2D special case. Vortices
such as the one in Fig. 3(a) are known to be resilient features in the flow [38,39], in our case often
persisting over one eddy turnover time (T∗ = |h|/w∗), even though their scale is considerably smaller
than the mixed layer depth. They are also a common feature at any given time, as can be seen in
Fig. 3(b), which shows a small part of the domain with several such examples. Their persistence and
frequency of occurrence allows for many vortex merging events, both destructive (when the vortices
have opposite-sign circulations) and constructive (when vortices have same-sign circulations). Since
negative peaks in Q at the surface are one end of these vortices, they are also persistent (defined here
as having a lifetime of roughly an eddy turnover time or larger), have frequent merging events, and,
as a consequence, will turn out to have a key effect on surface particle distribution, as will be shown
in Sec. IV B.

B. Surface particle distribution

In this section we focus on the horizontal distribution of the particles on the surface, with the goal
of understanding the mechanisms that act to produce the structures like the one depicted in Fig. 1,
specifically the preferential concentration effects already introduced. The particle initial condition
is C(x,t)/C∗ = 1 in every point in the domain that has near-zero-temperature gradient, where C∗
is a particle concentration scale. In this simulation this corresponded to having roughly the first
70 m of the OML start with unit normalized concentration. This specific initial condition ensures
that particles will be easily mixed in the OML and that the particle distribution will reach statistical
steady state within a short period of time.

As previously discussed, Fig. 1 shows the surface concentrations for cases C0.19, C0.44, and
C1.21 [Figs. 1(a), 1(b), and 1(c), with floatabilities β = 0.194, 0.473, and 1.21, respectively], with
the divergence D in Fig. 1(d). A closer look at the figure reveals that, while the largest values of
the particle concentration field (in all three cases) are concentrated in convergence zones (due to
the primary preferential concentration effect), particles with higher buoyancy have a preference
for certain parts of the convergent regions as opposed to others (due to the secondary preferential
concentration effect). We quantify and explain this by performing a flow topology analysis based on
Ref. [32] following the previously mentioned classification of points in types P (see Fig. 2). We first
introduce the P -conditioned average particle concentration at the surface, CP (P,t∗), defined as

CP (P,t∗) = 〈C(x,t∗)|P 〉|z=0, (11)

where P = I,II, . . . ,VI is the flow classification based on [32]. We plot the evolution of CP

(normalized by the average particle concentration at the surface 〈C〉s) in Fig. 4 for six different
cases (C0.00, C0.19, C0.44, C0.59, C0.78, and C3.11). It is clear that for early times (t∗ � 0.5)
the immediate general behavior for buoyant particles is for concentrations to rise in convergent
regions (I, II, and III) and to decrease in divergent regions (IV, V, and VI). This primary preferential
concentration effect was explained in Sec. I as a straightforward consequence of downwelling plumes
and that is now being quantified. After this initial behavior, we can see in cases C0.44–C3.11 that
the particle concentration in convergent nodes (I) begins to decrease, while the concentration in
convergent spirals (III) continues to increase, until they reach equilibrium roughly after t∗ ≈ 5. The
decrease in concentration in convergent nodes and increase in convergent spirals (which is more
accentuated the larger the floatability β) is caused by the secondary preferential concentration effect.
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FIG. 4. Time evolution of normalized P -conditioned average particle concentration CP (P,t∗) for C0.00,
C0.19, C0.44, C0.59, C0.78, and C3.11. Here 〈C〉s is the average particle concentration at the surface. Data are
smoothed by averaging over logarithmically spaced bins.

Thus, while the primary preferential concentration effect appears immediately after the initial particle
release, the secondary effect only becomes evident after a certain time.

Based on this delay for the secondary preferential effect to become apparent, we infer the existence
of a critical timescale t∗c

, defined as the time at which the secondary preferential concentration
mechanism becomes important, and visually estimate it using the curve for the concentration in
convergent nodes (I), which shows a very clear inflexion point. In our case we estimate it as roughly
t∗c

≈ 0.5 and mark it in Fig. 4 with vertical dashed lines. Later t∗c
is shown to be a consequence of

the vortices collecting particles at the surface.
We now plot the equilibrium (steady-state) values as shown in Fig. 4 [which we take as estimates

of CP (P,t∞), with t∞ being an estimate for t∗ → ∞] in Fig. 5 as a function of the floatability β.
Note that most curves appear to be monotonic with respect to β, with the exception of convergent
nodes (I). Despite this exception, the general behavior is clear: The larger the floatability β for
a particle, the higher the concentration in convergent spirals (III) in comparison with convergent

FIG. 5. Steady state for P -conditioned surface concentrations (normalized by average surface concentration)
for different types of surface flow structures and different particle cases (plotted as β).
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FIG. 6. Concentration map of the conditioned average surface concentration 〈C|(Q,D)〉s normalized by
surface concentration for particles C0.00, C0.19, C0.44, and C0.05 in steady state.

nodes (I). Furthermore, as β increases, divergent regions become less and less populated, while the
only regions that do not have a significant evolution with β are convergent saddles. Moreover, from
Fig. 5 we see that when 0.1 < β < 1 there is a transition behavior from a tracer regime to a floater
regime. This is strong indication that the particles in cases C1.21, C1.75, and C3.11 (β � 1) are
already in a buoyancy-dominated regime (floaterlike behavior). It is worth noting that, since there
are significantly more convergent saddles than convergent spirals in the current convection-driven
flow (see Fig. 2), the total masses of particles in regions II and III are very close (not shown), even
though region III dominated the magnitude of particle concentration.

A more detailed view of the steady-state regime can be obtained when analyzing the average
particle concentration conditioned to (Q,D) pairs, which we denote by 〈C|(Q,D)〉s , as shown in
Fig. 6 for cases C0.00, C0.19, C0.44, and C3.11. The preference for particles to be concentrated in
convergent regions (and “diluted” in divergent regions) is evident for all cases except the nonbuoyant
case C0.00, as was expected because of the primary preferential concentration effect. Furthermore,
we see that for cases with large β, e.g., C3.11, particles tend to concentrate in the extreme values
of |Q|. The high concentrations in negative Q peaks can be easily understood, since preference for
particles to cluster in convergent spiral regions increases as Q becomes more negative (i.e., the local
flow is more dominated by vorticity). Thus, these high concentrations at the bottom of Fig. 6 are
another indication of the secondary preferential concentration effect.

The high particle concentrations in regions with positive peaks in Q can be explained only after
the mechanism driving the secondary preferential concentration effect is explained. We do that by
first noting that strongly vortical convergent regions not only tend to attract particles, but they also
have large persistence times (compared to other features of the flow), as was already discussed at
the end of Sec. IV A (recall that surface regions with strong negative Q are one end of a vertical
vortex). Their effect on tracerlike particles is small, since soon after the particles are attracted to these
vortices they are submerged and resurface in divergent regions, which is the reason the secondary
preferential concentration effect is not evident for particles in cases C0.00 and C0.19 (β < 0.2) in
Fig. 6. However, particles with large floatability remain on the surface after being attracted to these
highly vortical regions, where they get horizontally advected with the vortices themselves (since
there is little transfer of particle mass from the vortex to the outside flow) as the vortices collect
more particles, thus creating small regions with high concentrations. Hence, vortical regions act as
particle collectors and carriers.

This behavior is illustrated in Figs. 7 and 8, which show sequences of snapshots depicting the
Okubo parameter Q, particle mass concentration C, and vorticity. The snapshots in both figures
advance in time from top to bottom, with an interval between panels of approximately 0.13T∗ and
0.22T∗ for Figs. 7 and 8, respectively. In Fig. 7 we see a constructive vortex interaction in which
the evolution of the concentration seen in the middle-column panels is dominated by two vortices of
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(a)

(b)

(c)

(d)

FIG. 7. Sequence of snapshots at increasing time (from top to bottom) of the Okubo parameter Q, particle
mass concentration C, and vorticity on the surface. Each set of panels, from (a) to (d), is a different time, which
is indicated on the right of the figure. The sequence shows a constructive interaction and the colormaps are the
same as in Fig. 1.

positive circulation that interact and merge into a stronger vortex. This type of interaction contributes
to produce the peaks in concentration for the strongly negative values of Q shown in Fig. 6. In Fig. 8
we see a destructive vortex interaction in which vortices with opposite-sign circulations weaken each
other until finally there is no vortex [Fig. 8(e); see also Supplemental Material [40] for an animated
version of this event]. It is also clear in this case that the vortex dynamics completely dominates the
high particle concentration region shown in the middle-column panels. Furthermore, this interaction
illustrates that destructive mergers leave behind a cluster of “orphan” particles: i.e., particles that
were previously inside vortices that were broken apart by the flow.

The vortex interactions just described can also explain the high concentration peaks for large pos-
itive values of Q shown in Fig. 6. Notice that positive peaks in Q (which are saddle points and appear
as dark red shades in Figs. 7 and 8) are more common at the borders of the vortices that are interacting
than anywhere else in the flow. Consider, for example, Figs. 8(a) and 8(b), which show high values of
Q (dark red) around the three interacting vortices (dark blue). We see in those figures that while some
particles move in between different vortices (which is a process virtually exclusive to interacting
vortices), they transition through high-Q regions, which are saddle points with strong straining
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(a)

(b)

(c)

(d)

(e)

FIG. 8. Sequence of snapshots at increasing time (from top to bottom) of the Okubo parameter Q, particle
mass concentration C, and vorticity on the surface. Each set of panels, from (a) to (d), is a different time, which
is indicated on the right of the figure. The sequence illustrates a destructive vortex interaction and the colormaps
are the same as in Fig. 1.

motion. This suggests that the high particle concentrations in regions with large values of Q shown
in Fig. 6 are a consequence of the movement of particles that are caught up in vortex interactions.

These types of vortex interactions (as particle advection mechanisms) are very common and are
seen throughout the simulation, thus it is not surprising that they play an important role affecting the
surface particle distribution in steady state. As a final remark, we note that they also explain why
the secondary preferential concentration effect becomes evident only after some time t∗c

. Since the
concentration is homogenized in the beginning of the simulation, it takes the flow approximately half
of an eddy-turnover time (t∗c

≈ 0.5) after the initial condition for a significant amount of particles
to be collected by the vortices. Before this time, both nodes and spirals (both of which have strong
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downwelling motion) attract particles somewhat equally. After t∗c
nodes start to break (by straining

action of the flow) while spirals persist and continue collecting particles. Thus, the time t∗c
is when the

persistence of spirals starts to become important so as to make a significant change in the evolution
of surface particle concentrations. Note that the vorticity on the surface is likely to concentrate over
similar timescales, since the mechanism for horizontal advection acts similarly on both.

V. CONCLUSION

In this work we have studied the mechanisms controlling surface particle distribution in the ocean
mixed layer in a free convection regime. A large-eddy simulation was used to simulate the evolution
of the particle concentration for 11 different cases with different levels of buoyancy, which translate
into 11 different values for the terminal rise velocity, that were assumed to have no inertia.

A primary and a secondary preferential concentration effect were identified and quantified by
analyzing the concentration in different surface regions according to a flow topology analysis based
on Okubo [32]. We found that the primary preferential concentration effect, in which particles are
expelled from horizontally divergent regions on the flow’s surface, happens immediately after initial-
ization, as already expected [10]. We also found that the secondary preferential concentration effect,
in which particles are attracted to highly vortical convergent regions of the flow, only becomes evident
after about 0.5 eddy turnover time and for highly buoyant particles (β � 0.5). This secondary effect
was explained as the consequence of resilient surface vortices acting as particles collectors that trap
highly buoyant particles in vortical regions. While the particles are trapped, the vortices continue be-
ing advected by the flow and collecting more particles until eventually they get weaker and are broken
up by the flow. Once again we note that, although the final result is qualitatively similar to preferential
concentration of inertial particles (where light particles also concentrate in vortical regions [18]),
the mechanism that drives this behavior does not rely on any inertial effects. It is also worth noting
that the accumulation mechanism is ultimately the convergence in the convergent spirals and not the
vorticity per se. The role of vorticity in the mechanism is to make the convergence last long enough
for a significant number of particles to be attracted. Conversely, convergence regions that are not
dominated by vorticity are quickly broken up by the flow and have little effect on particle distribution.

Finally, the significant effect of floatability on particle preferential concentration may have impor-
tant implications for parametrization of subgrid-scale transport in regional and global models. The
preferential concentration effects described here (especially the secondary effect) can be understood
as antidiffusion, which is a process by which initially separated particles cluster into small regions,
instead of spreading out, as time progresses. Antidiffusive behavior of floaters has been observed
in larger scales in the ocean, often in connection to spiraling flows [41,42]. Currently, subgrid-scale
transport of scalars in regional and global circulation models is parametrized as a diffusive process
without any dependence on the buoyancy of the scalar. Although it is hard to assess the impacts
that the preferential concentration effects described here may have on larger-scale transport of
buoyant particles, it is possible that they are significant enough to make it necessary to include
some antidiffusive component linked to a measure of the floatability in the parametrization schemes.
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APPENDIX: CHARACTERIZATION OF FLOW STATISTICS

Here we briefly describe the statistical profiles of our simulation, mainly for the sake of
completeness. Figure 9 shows some mean flow profiles in steady state. The variance profiles for the
horizontal velocities [Fig. 9(a)] have a shape typically expected for free convection, with a maximum
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(a) (b) (c)

FIG. 9. Profiles of (a) uα (u, v, and w) variances, (b) vertical velocity skewness, and (c) heat flux for steady
state.

at the surface and a smaller peak in the entrainment zone, which is consistent with previous results
[44,45]. The variance of the vertical velocity w [Fig. 9(a)] peaks at z/|h| ≈ −0.3, as is expected
[44,45], while its skewness [Fig. 9(b)] peaks at approximately the middle depth of the OML, also
in agreement with previous results [45]. The negative values of the skewness, which is an important
parameter in boundary-layer dynamics [24], indicate strong downwelling plumes counterbalanced
by weak upwelling regions, which we anticipate to have a strong influence on the distribution of
the particles in the OML. The heat flux profile [shown in Fig. 9(d)] indicates an upward heat flux
that decreases linearly from the surface and has a second (negative) peak in the entrainment layer,
consistent with previous results [45].
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