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ABSTRACT
We perform direct numerical simulations to simulate the in-

teraction between surface waves and the turbulence underneath.
The Navier–Stokes equations are simulated using a pseudo-
spectral method in horizontal directions and a finite-difference
method in vertical direction, with fully nonlinear viscous free-
surface kinematic and dynamic boundary conditions at the free
surface. We set up the turbulence and the waves by a random
forcing method in the bulk flow and a pressure forcing method
at the surface, which were recently developed by [1]. It is found
that there are surface waves generated on the free surface due to
the excitation by the turbulence. The surface elevation is sensi-
tive to the effect of gravity and surface tension. In the presence
of progressive waves at the free surface, the turbulent vortical
structure is turned, stretched, and compressed periodically by
the strain field of waves.

INTRODUCTION
Wave–turbulence interaction in the upper ocean is impor-

tant to many applications, including gas and heat transfer at the
ocean surface, mixing in the upper layer ocean, and wave evo-
lution. Previous studies [2] showed that gravity waves enhance
the turbulence. Analysis of the distortion of waves on turbulence
using rapid distortion theory (RDT) [3] showed that turbulence
Reynolds stress and vorticity are wave phase dependent. The ac-
cumulated effect of the Stokes drift associated with the waves is
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one of the possible mechanisms that turns vertical vorticity into
the streamwise direction. The theoretical analysis also showed
that there is direct energy transport between the surface waves
and the turbulence. Such energy transport was also observed in
experiments [4, 5].

Numerical study of the wave–turbulence interaction requires
proper setup of the wave and turbulence fields in the simula-
tion. Most of the previous numerical studies focused on rigid-
lid flows with a mean shear to represent the averaged effect of
the Stokes drift of surface waves [6–8]. However, the effect of
periodic wave straining is omitted. Recently, Guo and Shen [1]
overcame the challenges of setting up progressive waves and tur-
bulence precisely in a numerical tank, with the complex wave–
turbulence interaction process in presence. Isotropic turbulence
in the bulk flow is generated by a linear random force, which is
proportional to the velocity fluctuation [9, 10]. The turbulence is
then transported and diffused to the near surface region and inter-
acts with the free surface. The progressive wave is generated and
maintained by a surface pressure. The results in [1] showed that
the progressive wave is well maintained and spurious standing
waves are suppressed effectively.

In this study, we perform direction numerical simulation
(DNS) of wave–turbulence interaction with the wave and tur-
bulence controlled precisely. Fully nonlinear kinematic and dy-
namic free-surface boundary conditions (see e.g., [11–13]) are
used in our simulation. We study the surface deformation caused
by the turbulence underneath. We also study the vortex turning,
stretching, and compressing associated with the surface wave.
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Figure 1. SCHEMATICS OF ISOTROPIC HOMOGENEOUS TURBU-
LENCE INTERACTING WITH A PROGRESSIVE WAVE.

PROBLEM DEFINITION AND NUMERICAL METHOD
We consider direct numerical simulation of a three dimen-

sional turbulent flow under a free surface. As shown in Fig. 1
and below, isotropic turbulence is generated by a body force in
the bulk flow, which is different from most of the previous sim-
ulations of free-surface turbulence wherein turbulence was gen-
erated by the shear at the bottom, the shear in the bulk flow, or
initially-seeded turbulence. The region above the free surface
is vacuum. The numerical details of wave and turbulence gen-
eration are provided in [1]. The present problem setting has a
potential to correspond the experiments of interaction between a
free surface and homogeneous turbulence generated by oscillat-
ing grid or random jets.

In this study, the frame of reference has axes x, y, and z (also
denoted as x1, x2, and x3 if tensor notation is used), with x and y
horizontal and z vertical. The +z points upward, with the z = 0
plane coinciding with the undisturbed free surface.

The flow is governed by the incompressible Navier–Stokes
equations

∂ui

∂t
+

∂(uiu j)
∂x j

= − ∂p
∂xi

+
1
ℜ

∂2ui

∂x j∂x j
+a0 f [z0]ui, (1)

∂ui

∂xi
= 0. (2)

Here and hereafter, unless otherwise indicated, all variables are
normalized by a characteristic length scale L and a characteris-
tic velocity scale U . The dynamic pressure p is normalized by
ρU2, where ρ is the density of the fluid. The Reynolds number
is defined as ℜ = UL/ν, with ν the kinematic viscosity. The
last term on the right hand side of Eqn. (1) is the body force,
which generates homogeneous turbulence in the simulation. The

a0 is the body force parameter at the center of the computational
domain; and f [z0] is the body force distribution function and it
varies with z0, the distance to the center of the computational
domain, according to

f [z0] =





1 z0 ≤ lb,

1
2

(
1− cos

[
π
ld

(z0− lb− ld)
])

lb < z0 ≤ lb + ld ,

0 z0 > lb + ld ,

(3)

where lb is half of the vertical length of the bulk region and ld is
the length of the damping region (Fig. 1) [1].

At the free surface, the kinematic boundary condition (KBC)
is

∂η
∂t

+u
∂η
∂x

+ v
∂η
∂y
−w = 0, at z = η. (4)

Here η is the elevation of the free surface. The dynamic bound-
ary conditions (DBC’s) are

~t1 · [σ] ·~nT = 0, (5)

~t2 · [σ] ·~nT = 0, (6)

~n · [σ] ·~nT =
1

We

(
1

R1
+

1
R2

)
. (7)

In the above equations, the stress tensor [σ] is expressed as

σi j =−Pδi j +
1
ℜ

(
∂ui

∂x j
+

∂u j

∂xi

)
, (8)

where δi j is the Kronecker delta. Here P = p− z/Fr2, where the
Froude number is defined as Fr = U/

√
gL, with g the gravita-

tional acceleration. And ~n is the unit vector normal to the free
surface pointing from the fluid to the vacuum;~t1 and~t2 are unit
vectors tangential to the free surface. They are expressed as

~n =
(−ηx,−ηy,1)√

η2
x +η2

y +1
, ~t1 =

(1,0,ηx)√
η2

x +1
, ~t2 =

(0,1,ηy)√
η2

y +1
. (9)

In Eqn. (7), We = ρU2L/γ is the Weber number, with γ the sur-
face tension coefficient; and 1/R1 and 1/R2 are the principal cur-
vatures of the surface that satisfy

1
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+
1
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=

(
1+η2

x
)

ηyy +
(
1+η2

y
)

ηxx−2ηxηyηxy(
1+η2

x +η2
y
)3/2 . (10)
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Figure 2. SKETCH PLOT OF THE ALGEBRAIC MAPPING THAT
TRANSFORMS THE IRREGULAR CARTESIAN SPACE (x,y,z, t) CON-
FINED BY THE FREE SURFACE TO A RECTANGULAR COMPUTA-
TIONAL DOMAIN (ξ,ψ,ς,τ).

At the bottom z = −H, free-slip boundary condition is im-
posed. In horizontal directions, periodic boundary condition is
applied.

In the simulation of free-surface turbulence, a major issue is
that the shape of the surface is irregular and time-dependent. In
this study, we employ a boundary-fitted grid to simulate Eqns. (1)
and (2) subject to Eqns. (4), (5), (6), and (7). The irregular space
(x,y,z, t) confined by the free surface is transformed to a rectan-
gular computational domain (ξ,ψ,ς,τ) by an algebraic mapping,
which is similar to the 2-D σ-transform used in the previous stud-
ies [14, 15], defined as [1]

τ = t, ξ = x, ψ = y, ς =
z+H
η+H

. (11)

We normalize the vertical dimension by η + H. The grid is
stretched in the vertical direction. A sketch plot of the mapping
is shown in Fig. 2. We note that conformal mapping is often pre-
ferred for flow simulations in complex geometries (see e.g. [11]).
In the present problem, because the surface slope is not large, the
grid distortion associated with the algebraic mapping (11) has
a negligible effect on the simulation accuracy. Therefore, we
chose the current algebraic mapping for simplicity, which can
save computational cost greatly. As shown in [1], the effect of
computational grid distortion due to the algebraic mapping on
turbulence is negligible.

With Eqn. (11), based on the chain rule, we have
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Therefore, we obtain expressions for Eqns. (1) and (2) in the new
coordinate system as

∂u
∂τ

+
∂p
∂ξ
− ςηx

η+H
∂p
∂ς

= −∂(uu)
∂ξ

− ∂(uv)
∂ψ

− 1
η+H

∂(uw)
∂ς

+
ς

η+H

[
ηt

∂u
∂ς

+ηx
∂(uu)

∂ς
+ηy

∂(uv)
∂ς

]
+

1
ℜ

∇2u, (13)

∂v
∂τ

+
∂p
∂ψ

− ςηy

η+H
∂p
∂ς

= −∂(uv)
∂ξ

− ∂(vv)
∂ψ

− 1
η+H

∂(vw)
∂ς

+
ς

η+H

[
ηt

∂v
∂ς

+ηx
∂(vu)

∂ς
+ηy

∂(vv)
∂ς

]
+

1
ℜ

∇2v, (14)

∂w
∂τ

+
1

η+H
∂p
∂ς

= −∂(wu)
∂ξ

− ∂(wv)
∂ψ

− 1
η+H

∂(ww)
∂ς

+
ς

η+H

[
ηt

∂w
∂ς

+ηx
∂(wu)

∂ς
+ηy

∂(wv)
∂ς

]
+

1
ℜ

∇2w, (15)

and

∂u
∂ξ
− ςηx

η+H
∂u
∂ς

+
∂v
∂ψ

− ςηy

η+H
∂v
∂ς

+
1

η+H
∂w
∂ς

= 0. (16)

3 Copyright c© 2010 by ASME



The operator ∇2 in Eqns. (13)–(15) and the free-surface bound-
ary conditions (4)–(7) are also expressed in terms of (ξ,ψ,ς,τ).

For space discretization, in ξ and ψ directions, we use a
pseudo-spectral method with Fourier series; in ς direction, we
use a second-order finite-difference scheme on a staggered grid
[16]. The numerical scheme we use is based on the fractional-
step method discussed in [17]. We use a second-order Crank–
Nicholson scheme for the viscous terms and a second-order
Adams–Bashforth scheme for the convection terms. The sur-
face elevation is advanced in time with a second-order Runge–
Kutta scheme. We note that explicit numerical schemes were
often used in the literature when solving the momentum equa-
tion for the study of the interaction between laminar flows and
free surfaces [13, 18, 19]. For the present DNS study of turbu-
lent flows, however, a much higher spatial resolution is required
to resolve the fine turbulence structures in three dimension. If
an explicit scheme is used, the small grid size leads to small
time steps and thus high computational cost. The semi-implicit
Crank–Nicholson scheme used in the current study allows us to
use relatively large time steps with fine grids.

Our computational domain size is Lx×Ly×H = 2π×2π×
5π. We set ℜ and a0 to be 1000 and 0.1, respectively. Based on
Eqns. (36) and (38) in [1], the velocity fluctuation at the center
of the free region (Fig. 1) urms is 0.090 and the Taylor scale λ
is 0.339. Therefore, the Taylor-scale Reynolds number is ℜλ =
urmsλ/ν = 30.39 near the free surface. We use a 128×128×348
grid. In horizontal directions, the grids are evenly distributed.
In the vertical direction, the grids are clustered towards the free
surface; there are about 60 points in the free region and 10 points
in the viscous layer of the free surface to ensure the boundary
layer at the free surface is resolved adequately.

We note that in [13] and [20], adaptive grids were used in
both the horizontal and vertical directions when studying the in-
teraction of vortex pair with a free surface. The adaptive grids
allow the resolution of the detailed flow structure near the vortex
pair and the free surface with affordable computational cost. In
the current study, the grid points are clustered only in the vertical
direction with fine grid size near the free surface. In the horizon-
tal directions, evenly-spaced grid is used together with a Fourier-
series-based spectral method. The strategy of the present simula-
tion is determined by the nature of the problem being studied: the
turbulence near the free surface has a fine surface layer structure
in the surface-normal direction, while in the surface-tangential
directions a continuous turbulence energy spectrum exists (see
e.g., Fig. 3).

RESULTS
In this section, we discuss the simulation results of two

canonical problems: the interaction of isotropic and homoge-
neous turbulence (IHT) with a deformable surface (hereinafter
referred to as ‘Problem I’), and the distortion of IHT by a pro-
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Figure 3. NORMALIZED SURFACE ELEVATION SPECTRA FOR: ——
, (Fr2 = 0.1, We−1 = 0.025); – – – , (Fr2 = 0.2, We−1 = 0); – · – ·
– , (Fr2 = 0.2, We−1 = 0.025); · · · · · · , (Fr2 = 0.2, We−1 = 0.05);
— — , (Fr2 = 0.8, We−1 = 0.025).

gressive surface wave (hereinafter referred to as ‘Problem II’).

Problem I: Surface Elevation Spectrum
In the simulation of Problem I, the surface is initially calm

and the IHT is generated at certain distance beneath the free sur-
face [1]. When the coherent turbulence structures transport and
diffuse to the free surface boundary layer, they interact with the
deformable surface and have significant effect on the surface ge-
ometry. The significance of such interaction is controlled by the
relative intensity of the turbulence with respect to the surface
restoring forces due to gravity and surface tension, which are
characterized by the Froude and Weber numbers, respectively.

We first examine the spectrum of the surface elevation and
its dependence on the Froude and Weber numbers. Because the
current problem is isotropic in the horizontal directions, a one-
dimensional spatial spectrum for η(~x, t) can be defined as

Ψη

(∣∣∣~k
∣∣∣
)

=
1

(2π)2

Z

S
η(~x, t)η(~x+~r, t) · e−i~k·~r d~r. (17)

Here~x and~r refer to horizontal vectors. The spectrum is normal-
ized as

ΨN
η

(∣∣∣~k
∣∣∣
)

=
Ψη

(∣∣∣~k
∣∣∣
)

(ηrms)2 . (18)

Here ηrms denotes the root-mean-square value of η with the
statistics performed first in the horizontal directions and then in
time. Figure 3 plots ΨN

η for different (Fr2, We−1) cases. The sur-
face elevation increases monotonically as k decreases, because
the underlying homogeneous turbulence excited by the random
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force has the largest energy at k = 1 [10]. At large k, the case
without surface tension (Fr2 = 0.2, We−1 = 0) has an η spec-
trum proportional to k−7/2. For the other cases shown in Fig. 3,
the surface tension effect becomes important at large wavenum-
bers.

The relative importance of the gravity and surface tension
effects can be measured by a critical wavenumber suggested by
[21], which is defined as

kcr =

√
We
Fr2 . (19)

The physical meaning of kcr can be understood through a simple
model for a monochromatic wave with wavenumber k and small
amplitude ak. The density of gravitational potential energy is

Ep,g ≈ 1
4

a2
k

Fr2 . (20)

The density of the surface tension potential energy is

Ep,γ ≈ We−1 · 1
2S

Z

S

[(
∂η
∂x

)2

+
(

∂η
∂y

)2
]

dx dy

=
1
4

We−1k2a2
k .

(21)

Therefore, the ratio between the two types of potential energy is

Ep,γ

Ep,g
≈We−1Fr2k2 =

(
k

kcr

)2

. (22)

When k < kcr, the gravity effect is more important; whereas when
k > kcr, the surface tension effect dominates.

For k > kcr, ΨN
η decreases significantly. We note that none

of the present cases are purely capillary waves. Therefore, the
k−5-scaling [22] does not show here.

The relative importance of gravity and surface tension ef-
fects in the spectral space can be seen in Fig. 3. When We−1

is fixed and Fr2 increases, or when Fr2 is fixed and We−1 in-
creases, the surface elevation decreases at large k. According to
Eqn. (19), the critical wavenumber kcr decreases. As a result, for
k > kcr where the surface tension effect dominates, the surface
fluctuation decreases significantly.

In addition to the spatial statistics of surface elevation, we
can further investigate its temporal features via the spatial–
temporal spectrum

Φa

(∣∣∣~k
∣∣∣ ,σ

)
=

1

(2π)3

Z

T

Z

S

{
η(~x, t)η(~x+~r, t + τ)

·e−i(~k·~r+στ)
}

d~r dτ, (23)
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Figure 4. NORMALIZED SPATIAL–TEMPORAL SPECTRUM OF THE
SURFACE ELEVATION FOR THE CASE OF (Fr2 = 0.8, We−1 =
0.025). —— , DISPERSION RELATIONSHIP (25); – – – , CHARAC-
TERISTIC FREQUENCY BASED ON FULLY NONLINEAR KBC (26).

which is normalized as

ΦN
a

(∣∣∣~k
∣∣∣ ,σ

)
=

Φa

(∣∣∣~k
∣∣∣ ,σ

)

(ηrms)2 . (24)

Figure 4 shows ΦN
a . For the case of (Fr2 = 0.8, We−1 = 0.025),

energy is concentrated on two ridges in the contour plot, which
correspond to two types of surface motions, namely propagat-
ing surface waves and turbulence-induced surface deformation.
To show the waves, we consider the dispersion relationship for
small-amplitude deep-water waves:

σ∗ =

√
k

Fr2 +
k3

We
, (25)

which is plotted in Fig. 4 as the solid line. It fits the high-
frequency ridge well. The fact that the high-frequency ridge is
manifested mainly at small k region suggests that surface waves
are of large scales, which is as expected because small-scale
waves are quickly damped in the turbulence field.

For the surface deformation associated with the turbulence
motion, the characteristic frequency of η at each k is quantified
as

σn =

√
Ψη (k)
Ψηt (k)

. (26)

Equation (26) takes into account the nonlinearity of surface mo-
tion (ηt = w−uηx− vηy). Figure 4 shows that Eqn. (26) fits the
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〈|ωz|∂u/∂z〉. THE WAVE PROPAGATES FROM LEFT TO RIGHT.

low-frequency ridge. We remark that our results are consistent
with the recent experiment by [23].

The result in Fig. 4 shows that the surface motion can be de-
scribed by the dispersion relationship for surface waves and the
nonlinear-KBC based characteristic frequency for turbulence-
induced surface deformation. The waves mainly happen at small
k. The surface deformation associated with the turbulence, on
the other hand, occurs over a wide range of wavenumbers be-
cause of the turbulence motions at the corresponding scales. As
shown in Fig. 4, at small k, the frequency given by the disper-
sion relationship is close to the characteristic frequency associ-
ated with turbulence, indicating that waves may be excited by
turbulence structures at large scales. At large k, there exists large
gap between the two frequencies. As a result, small-scale waves
are less likely to be generated, and turbulence-induced roughness
dominates at large k.

Problem II: Turbulent Vorticity Distribution Under A
Surface Wave

We next discuss the influence of a progressive surface wave
on the underlying turbulence vorticity. In our simulation of Prob-
lem II, one progressive surface wave, which propagates in +x-
direction, is generated and maintained to provide a continuous
distorting strain field to the IHT field. In the transverse direction,

periodic boundary condition is applied. Therefore, the flow is
quasi-three-dimensional. From the instantaneous flow field (not
shown here), we observe that vortices are stretched and turned by
the wave motion. Our statistical results confirm this observation.
Among the different terms in the vortex dynamics equation [24],
we found that vortex stretching plays an important role in the
evolution of 〈ωx〉 and 〈ωz〉 (variation in 〈ωy〉 is small and is thus
not a focus here). Figures 5(a) and (b) show the distributions of
the vortex stretching terms 〈|ωx|∂u/∂x〉 and 〈|ωz|∂w/∂z〉, respec-
tively. Here the absolute value is used because for both positive
and negative ωx and ωz, the same mechanism exists; averaging
without the absolute value results in cancelation in the statistical
value.

For the streamwise vortices, Fig. 5(a) shows that
〈|ωx|∂u/∂x〉 is positive under the backward face of the wave and
negative under the forward face of the wave. When the backward
face of the wave passes by, streamwise vortices are stretched. As
a result, 〈ω′2x 〉 reaches its maximum value under the wave trough.
Compression occurs when the forward face of the wave passes
by. Therefore, 〈ω′2x 〉 reaches its minimum value under the wave
crest. For the vertical vorticity, Fig. 5(b) shows that 〈|ωz|∂w/∂z〉
is positive under the forward face of the wave and negative un-
der the backward face of the wave, which leads to the maximum
value in 〈ω′2z 〉 under the wave crest and minimum value under the
wave trough.

It is found that vortex turning also plays an important role
in the evolution of vertical vorticity. The vortex turning term
〈|ωz|∂u/∂z〉 is plotted in Fig. 5(c). Due to the wave orbital mo-
tion, near the surface, vertical vortices are turned to the wave
propagating direction under the forward face of the wave crest
and the backward face of the wave trough, and to the oppo-
site direction under the forward face of the wave trough and the
backward face of the wave crest. As a result, 〈|ωz|∂u/∂z〉 has
positive–negative staggered distribution as shown in Fig. 5(c).
However, this vortex turning term under the forward face of the
wave crest is much stronger than at other places. Therefore, the
net effect is that vertical vortices are turned to the streamwise di-
rection. This result is consistent with the analysis of the Stokes
drift by [3]. Finally, we remark that because the vortex turning
and stretching terms are highly phase dependent, the configura-
tion of vortical structures are in general quite complex.

CONCLUSION
In this work, we have used direct numerical simulation tech-

nique to study the interaction of isotropic homogeneous turbu-
lence with a deformable free surface and progressive surface
waves. Our simulation captures the detailed structures in the
flow. The surface elevation signature agrees with the existing free
surface wave and turbulence theories and experimental observa-
tions. Our statistical analysis on wave–turbulence interaction
has also revealed unique features of turbulence vortical struc-
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tures under the influence of the progressive surface wave field.
The turbulence vorticity is strongly wave-phase dependent due to
the stretching and compressing by the strain field of the surface
wave. The vertical vortex is turned to the streamwise direction
by the accumulated effect of the surface wave. Further system-
atic investigation and more detailed discussion on this topic will
be reported in our future work.
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