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ABSTRACT
The effects of free-slip boundary on shear turbulence are studied numerically using the direct numerical simulation (DNS) approach. The
flow considered in this study is a stress-driven turbulent Couette flow between two flat boundaries. The top boundary has an imposed shear
stress in the streamwise direction and a free-slip condition for the streamwise velocity fluctuation and the spanwise velocity, and the bottom
boundary satisfies the no-slip condition. This type of flow has a mean flow pattern similar to the turbulent plane Couette flow between a
stationary flat plate and a moving flat plate but exhibits considerable differences in turbulence statistics due to the effects of the free-slip
boundary. Statistical analysis based on the DNS data and theoretical derivation based on Taylor series expansion show that near the free-slip
surface the turbulence variances of the three velocity components vary as quadratic functions of the vertical distance from the boundary
while the Reynolds shear stress exhibits a linear behavior, which are very different from the counterparts near the no-slip boundary. The
free-slip surface condition also leads to zero horizontal vorticities at the surface but allows nonzero vertical vorticity in the meantime, leading
to considerable differences in the near-boundary statistics of vorticities and coherent vortex structures. Comparison of three DNS runs with
different grid resolutions shows that smoothly resolving the more energetic turbulent flow structures near the free-slip boundary requires a
higher horizontal grid resolution than that used for resolving the structures near the no-slip boundary.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099650., s

I. INTRODUCTION

Turbulent flows driven by surface shear stress occur commonly
in the upper layer of oceans and lakes under surface wind stress
forcing.1 To model such types of flows, many prior studies have con-
sidered an idealized flow problem configuration, in which a mean
shear stress is imposed on a rigid impermeable flat surface to drive
the shear turbulence underneath and the turbulent fluctuation veloc-
ity is allowed to slip freely at the surface.2–4 Similar to the turbulent
flows over solid boundaries where the wall friction helps to main-
tain the velocity shear for turbulence generation, the mean shear
stress acting on a free-slip surface generates a mean velocity gradi-
ent that produces turbulence via shear instability.5,6 However, unlike
the no-slip velocity condition on a solid surface where velocities
are restricted to be zero at the boundary, on a free-slip surface
the fluctuating velocity in the tangential directions of the surface

can have considerable spatial and temporal variations due to tur-
bulence. Consequently, the characteristics of the turbulence near a
free-slip boundary can be quite different from those near a no-slip
boundary.7–10

In the past several decades, the characteristics of turbulent flows
over no-slip boundaries have been studied extensively based on tur-
bulent channel flows and Couette flows between two flat plates.11–20

In contrast, shear-driven turbulent flows near free-slip surfaces have
received less attention and the knowledge on their characteristics is
less developed compared to those for the no-slip boundary cases.
Many previous studies for the effects of free-slip boundaries on tur-
bulent flows have focused on the pure “free surface” scenario, in
which there is no shear stress applied and the surface is completely
free of tangential forcing. Because of the lack of mean shear, the
turbulence is usually generated by a no-slip surface on the oppo-
site boundary of the free-slip boundary (i.e., turbulent open-channel
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flows)7,10,21,22 or decay in time due to the lack of mean shear or
external forcing to sustain the turbulence.9,23 In some studies, the
free surface also features deformations either prescribed or excited
by the turbulence underneath it, and artificial external forcing is
applied in the bulk flow region far away from the boundary to gen-
erate turbulence that advects to the boundary to interact with the
free surface.24,25 Many interesting flow phenomena and valuable
physical insights were obtained from these studies to improve our
understanding on the effect of the free-slip boundary on turbulence.
However, in these pure free-surface cases, the turbulence genera-
tion region is separated from the free-slip boundary, making the
dynamics of turbulence considerably different from the conditions
with mean surface shear. To date, the characteristics of turbulent
flows near rigid free-slip boundaries in the presence of surface shear
remain not well understood.

In this study, we investigate the effects of a free-slip boundary
on the characteristics of a shear turbulent flow by applying direct
numerical simulation (DNS) to model the stress-driven turbulent
Couette flow. In particular, the flow is bounded by a no-slip imper-
meable flat surface at the bottom and a free-slip impermeable flat
surface at the top, with periodic conditions on the lateral boundaries.
A constant mean shear stress is applied in the streamwise direction
at the top surface to drive the flow. This flow has a mean velocity
profile similar to the classical turbulent plane Couette flow between
a stationary bottom plate and a moving top plate.11,13,14,16 At the
top boundary, the imposed shear stress induces a constant verti-
cal gradient of the mean streamwise velocity; the streamwise and
spanwise velocity components are allowed to fluctuate on the top
surface but have a zero vertical gradient for the fluctuating compo-
nents. Such a type of stress-driven Couette flow has been employed
as the base flow system for many prior numerical studies of turbulent
flow over water waves.26–28 By having a free-slip boundary and a no-
slip boundary in a single flow system, the current flow configuration
allows us to study the effects of free-slip boundary on the charac-
teristics of shear turbulence and compare them to the counterparts
near a no-slip boundary.

In this study, the stress-driven Couette flow is simulated using
DNS at a Reynolds number of 180 defined based on the friction
velocity and half-domain height. This relatively low Reynolds num-
ber is chosen because the turbulence statistics in this Reynolds num-
ber regime have been well studied and there are many reported
DNS and experimental data available for comparison.11–14,16 Three
different grid resolutions are considered to assess the effect of the
free-slip boundary on the computational cost of DNS, among which
the lowest resolution case has comparable grid resolutions to prior
DNS studies and the other two cases have even higher resolutions.
To characterize the effects of the free-slip boundary on the turbu-
lent flow, systematic statistical analyses on the mean and fluctuat-
ing components of the velocity field are performed. In particular,
the vertical profiles of the mean velocity, turbulence variances, and
Reynolds shear stress in the top and bottom boundary regions are
quantified in detail. The balances of turbulent kinetic energy (TKE)
budgets are investigated for both the individual components in the
three directions and their total. Vorticity statistics and coherent
vortex structures are also analyzed using planar averaging and con-
ditional averaging methods. Based on these statistics, the effects
of the free-slip boundary on the shear turbulence are studied and
compared to the classical no-slip boundary case.

It is worth mentioning that in applications related to upper
ocean boundary layer flows,2–4 additional effects due to the surface
waves are commonly considered. A widely used flow configuration
in these studies is to model the ocean surface as a free-slip rigid flat
surface with imposed wind shear stress, which is similar to the top
boundary configuration considered in this study. The averaged effect
of the surface waves on the shear-driven turbulence is then modeled
by including a vortex force acting on the flow field as a result of the
interaction between the wave-induced Stokes drift and the shear cur-
rent, which leads to the generation of Langmuir circulations.1,29,30

In these studies of Langmuir circulations, the simpler case of pure
shear-driven turbulence without the wave Stokes drift effect is often
used as the baseline case for comparison purpose, but the char-
acteristics of the shear-driven turbulence near the free-slip surface
itself has not been studied systematically in great detail. The DNS
study reported in this paper, despite the idealized simulation setup
without the wave effect, may provide useful insights to help under-
stand the general characteristics of shear turbulence near a free-slip
boundary.

This paper is organized as follows. The problem definition and
numerical method are discussed in Sec. II. The DNS results are pre-
sented in Sec. III, and the statistics of shear turbulence near the
free-slip and no-slip boundaries are analyzed and compared. Finally,
conclusions are summarized in Sec. IV.

II. PROBLEM DESCRIPTION AND NUMERICAL
METHOD

As illustrated in Fig. 1, in this study, we consider a Couette
type turbulent flow in a rectangular prism shape domain. The Carte-
sian coordinate system used in DNS is defined as x = xi(i = 1, 2, 3)
= (x, y, z), where x is for the streamwise direction, y is for the span-
wise direction, and z is for the vertical direction. The origin of the
z coordinate is set to be at the bottom boundary of the simulation
domain. The corresponding velocity vector is defined as u = ui(i = 1,
2, 3) = (u, v, w), where u, v, and w are the components in x-, y-, and
z-directions, respectively.

Within the simulation domain, the turbulent flow is governed
by the three-dimensional incompressible Navier–Stokes equations
in conservative form

∇ ⋅ u = 0, (1)

∂u
∂t

+∇ ⋅ (uu) = −1
ρ
∇p + ν∇2u, (2)

where ρ is the fluid density, p is the dynamic pressure, and ν is the
kinematic viscosity. Equations (1) and (2) are discretized using a
Fourier-series-based pseudospectral method on evenly spaced collo-
cated grid points in the horizontal directions. The standard 2/3-rule
is used for eliminating the aliasing error in the nonlinear terms asso-
ciated with the pseudospectral method.31,32 In the vertical direction,
a second-order finite-difference method is used for discretization
based on staggered vertical grid points for (u, v, p) and w. For time
advancement, the current DNS model uses a fractional-step pro-
jection method involving a velocity prediction step and a pressure
correction step.33 In the prediction step, the momentum equations
(2) for (u, v, w) are advanced in time based on a semiexplicit scheme,
with the second-order Adams–Bashforth scheme for the nonlin-
ear convective terms and the second-order Crank–Nicolson scheme
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FIG. 1. Three-dimensional illustration of DNS of stress-driven turbulent Couette flow. The setup of the DNS is shown in (a), and a snapshot of the flow field obtained from the
DNS is shown in (b), in which the contours of the instantaneous streamwise velocity (normalized by the friction velocity u∗) are shown on the surfaces.

for the viscous diffusion terms. In the correction step, a Poisson
equation for pressure is constructed based on the divergence-free
condition in Eq. (1) and solved, and the resulting pressure field
is used to project the predicted velocity into the divergence-free
space to obtain the final velocity at the end of time advancement
process for the current time step. More details for the numerical
schemes and validations of the current DNS solver can be found
in Ref. 34.

In this study, the DNS uses a computational domain of size (Lx,
Ly, H) = (2πδ, πδ, 2δ), where Lx is the domain dimension in the
x-direction, Ly is the domain dimension in the y-direction, H is the
domain height in the z-direction, and δ = H/2 is the half-domain
height. The flow satisfies the classical no-slip and impermeability
conditions at the bottom boundary at z = 0, i.e.,

u = v = w = 0. (3)

At the top boundary, the flow is not allowed to penetrate the flat
boundary but can slip freely in the spanwise direction; the flow
is driven by an imposed mean streamwise shear stress at the top
boundary, τx. The corresponding conditions at the top boundary are

∂u
∂z
= τx
μ

, (4)

∂v
∂z
= 0, (5)

w = 0, (6)

where μ is the dynamic viscosity of the fluid. Let the time and hori-
zontal average of a physical quantity f be denoted as ⟨ f ⟩, the corre-
sponding turbulent fluctuation is f ′ = f − ⟨ f ⟩. Applying the time and
horizontal average operator to the top boundary conditions gives
∂⟨u⟩/∂z = τx/μ, ∂⟨v⟩/∂z = 0, and ⟨w⟩ = 0. Thus, the velocity fluc-
tuations at the top boundary satisfy the free-slip and impermeability
conditions, ∂u′/∂z = 0, ∂v′/∂z = 0, and w′ = 0. With this configu-
ration, the mean flow velocity profile is very similar to the turbulent
plane Couette flow between a stationary bottom plate and a mov-
ing top plate, except that additional flow motions are allowed in the
horizontal directions at the top boundary in the current flow config-
uration. This stress-driven Couette flow has also been used to study
wind–wave interactions in many prior studies.26–28,35,36

We perform the DNS at a Reynolds number of Re∗ = u∗δ/ν
= 180, which is defined based on the turbulence friction velocity u∗

and the half-domain height δ. The friction velocity is related to the
imposed shear stress as u∗ =

√
τx/ρ. This Reynolds number is cho-

sen because the turbulent Couette flows and channel flows between
two flat plates in this low Reynolds number regime have been well
studied so that data are available for comparison to help study the
differences in turbulent flow characteristics caused by the differ-
ences in the free-slip and no-slip boundary conditions. In this study,
three DNS cases with identical simulation domain size and physical
parameters but different numbers of computational grid points are
considered, i.e., case R1 with 384 × 384 × 193 grid points, case R2
with 192 × 192 × 193 grid points, and case R3 with 128 × 128 × 129
grid points. The corresponding grid resolutions in wall units (i.e.,
Δx+, Δy+, and Δz+, where the superscript “+” denotes normaliza-
tion by the wall unit ν/u∗) are listed in Table I together with several
other representative DNS runs from prior studies.12,14,16 The vertical
grid distribution is further discussed in the Appendix. Among these
three cases considered in the current study, case R1 with the high-
est spatial resolution is the primary case, and its data are used for
statistical analysis of the turbulent flow physics. The simulation was
initialized with a divergence-free velocity field with random fluctua-
tions and was run for 133 eddy turnover times, τe = δ/u∗, from which
the statistics were obtained based on the last 10 eddy turnover times
123 ≤ t/τe ≤ 133. As shown in Table I, even the lowest resolution
case R3 has comparable grid resolution as other prior DNS stud-
ies of turbulent channel flows or Couette flows. However, as will be
discussed in Sec. III, the free-slip boundary conditions for the fluc-
tuating velocity components u′ and v′ generate apparent differences
for the turbulence statistics and coherent flow structures near the
free-slip top boundary when compared to those near the no-slip bot-
tom boundary. Consequently, the computational cost for resolving
the essential turbulence flow phenomena near the free-slip bound-
ary is significantly higher than that for the bottom no-slip bound-
ary. The three different grid resolutions considered in this study are
used to illustrate this increase of computational cost, as shown in
Sec. III E.

Note that cases R1–R3 use a simulation domain of (2πδ, πδ, 2δ),
which has smaller horizontal dimensions than those used in the pre-
vious studies listed in Table I. This smaller horizontal domain size
allows us to achieve high grid resolutions in the x- and y-directions
with affordable computational cost in the primary case R1. To check
that the horizontal domain size is sufficient, an additional case R4
with a larger simulation domain of (4πδ, 2πδ, 2δ) is also considered.
For the streamwise velocity component u, the two-point spatial
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TABLE I. Resolution used in DNS of turbulent Couette flows and channel flows.

Reynolds number Domain size Grid number Resolution in wall units

Flow type Re∗ = u∗δ/ν (Lx, Ly, H) Nx × Ny × Nz Δx+ Δy+ Δz+

Channel flow12 180 (4πδ, 2πδ, 2δ) 192 × 160 × 129 11.8 7.1 0.05–4.4
Couette flow14 157 (4πδ, 2πδ, 2δ) 128 × 128 × 65 15.4 7.7 0.18–7.6
Couette flow16 130 (4πδ, 2πδ, 2δ) 144 × 96 × 96 10.8 13.5 1.0–5.5
Couette flow (case R1) 180 (2πδ, πδ, 2δ) 384 × 384 × 193 2.9 1.5 0.09–3.5
Couette flow (case R2) 180 (2πδ, πδ, 2δ) 192 × 192 × 193 5.9 2.9 0.09–3.5
Couette flow (case R3) 180 (2πδ, πδ, 2δ) 128 × 128 × 129 8.8 4.4 0.13–5.4
Couette flow (case R4) 180 (4πδ, 2πδ, 2δ) 256 × 256 × 129 8.8 4.4 0.13–5.4

autocorrelations as a function of streamwise separation ξ and span-
wise separation ψ are calculated according to Refs. 6, 12, 14,
and 37,

Ruu(ξ, z) = ⟨u
′(x, y, z)u′(x + ξ, y, z)⟩
⟨u′(x, y, z)u′(x, y, z)⟩ , (7)

Ruu(ψ, z) = ⟨u
′(x, y, z)u′(x, y + ψ, z)⟩
⟨u′(x, y, z)u′(x, y, z)⟩ , (8)

where u′ is the turbulent fluctuation of u and ⟨⋅⟩ denotes the
time and horizontal average as defined earlier. The autocorrelations
for the other two velocity components, Rvv and Rww, are defined

similarly. Figure 2 compares the two-point spatial autocorrelations
obtained from cases R1 and R4 using two different domain sizes and
shows good agreement between the two cases. Note that in a tur-
bulent Couette flow, the autocorrelation of the streamwise velocity,
Ruu, does not approach zero with large streamwise spatial separa-
tion ξ even when using extreme large horizontal simulation domain
sizes due to the existence of large coherent structures in the turbu-
lent plane Couette flows.37 Nevertheless, the results obtained from
the current DNS cases are consistent with those reported in the
literature for turbulent Couette flows.14,37 We choose to use the
domain size (2πδ, πδ, 2δ) for the primary simulation case R1 in this
study due to its lower computational cost for achieving higher grid
resolutions.

FIG. 2. Two-point spatial autocorrelations Ruu, Rvv , and Rww as a function of the [(a) and (c)] streamwise separation ξ/δ and [(b) and (d)] spanwise separation ψ/δ, at [(a)
and (b)] z+ = 5 and [(c) and (d)] (H − z)+ = 5. The results from case R1 with the (2πδ, πδ, δ) domain size are indicated by lines, and those from case R4 with (4πδ, 2πδ, δ)
domain size are indicated by symbols.
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III. RESULTS

A. Statistics of mean and fluctuating velocities
Figure 3(a) shows the profile of the mean (i.e., time and hori-

zontal average) streamwise velocity normalized by the friction veloc-
ity, i.e., ⟨u⟩+ = ⟨u⟩/u∗. When plotted in z/δ, the mean velocity profile
consists of two strong shear layers near the bottom and top bound-
aries and a constant-slope region in the center of the simulation
domain, which is similar to the profile in the turbulent plane Cou-
ette flows between two no-slip flat plates.11,13,14,16,17 The difference
in the two boundary regions can be viewed by plotting the profile
in each region using its own local distance from the boundary in
wall units. Figure 3(b) shows the semilog plot for the profiles of ⟨u⟩+
as a function of z+ near the bottom boundary and (⟨u⟩top − ⟨u⟩)+

as a function of z+
t = (H − z)+ near the top boundary, where

⟨u⟩top = ⟨u⟩(z = H). Both profiles exhibit a linear profile in the vis-
cous sublayer near the corresponding neighboring boundary and
a logarithmic profile in the log-law region. In Fig. 3(b), one refer-
ence curve based on the linear profile ⟨u⟩+ = z+ and two reference
curves based on the standard log-law profiles ⟨u⟩+ = (1/κ) ln(z+) + B
and (⟨u⟩top − ⟨u⟩)+ = (1/κ) ln(z+

t ) + B are plotted for comparison.
As shown in the figure, the mean velocity profile near the no-slip
boundary follows the linear profile well up to z+ ≈ 5. Near the free-
slip boundary, the linear profile region only extends to about z+ ≈ 2.
The current DNS result shows that both the bottom and top bound-
ary log-law profiles obey the standard log-law with the von Kármán
constant κ = 0.41, but the values for the profile offset constant B
differs for the two profiles. The mean velocity profile of the bottom
layer shows good agreement with the reference log-law curve based
on the classical value of B = 5.2,6,11 which is within the range of previ-
ously reported values of 4.5–6.0.14,16,37 For the top boundary profile,
a smaller offset constant of B = 2 yields good agreement with the
profile obtained from the current DNS.

Note that the top boundary layer profile is plotted based on
(⟨u⟩top − ⟨u⟩)+. The smaller offset constant B indicates that the
mean streamwise velocity at a z+

t in the log-law region of the top
boundary layer differs less from its corresponding boundary value
when compared to the counterpart at the same z+ near the bottom
boundary. Although the physical mechanism for determining the

value of B remains an open question and previous studies sug-
gested that B varies over a range even for solid-wall boundary layer
turbulence,6,14,16,37 in the current DNS the difference in B for the
mean velocity profile near the no-slip and free-slip boundaries may
be due to the more intensive turbulent motions and momentum
mixing near the free-slip boundary. Figure 4 shows the contours
of the velocity fluctuations (u′, v′, w′) and the streamwise vortic-
ity ωx on the two horizontal planes located at 5 wall units away
from the bottom and top boundaries. Note that because the mean
velocity components ⟨v⟩ and ⟨w⟩ are zero in the simulated Couette
flow, the instantaneous spanwise and vertical velocity fluctuations
satisfy v′ = v and w′ = w, respectively. As shown in Fig. 4, the hor-
izontal flow fields near both boundaries exhibit long streaky struc-
tures for u′. The magnitudes and spatial patterns of v′, w′, and ωx
show apparent differences near the two boundaries, with the plane
near the free-slip top boundary exhibiting more intensive turbulent
fluctuations.

The higher contour magnitudes for u′, v′, and w′ on the plane
at z/δ = 1.97 than those on the plane at z/δ = 0.03 suggest that the
turbulent flow motions are more energetic in the region near the
free-slip top boundary than those near the no-slip bottom boundary.
This difference in the turbulent kinetic energy near the two bound-
aries can also been seen from the one-dimensional energy spectra.
Figure 5 shows the streamwise and spanwise energy spectra for the
three velocity components at z+ = 5 and (H − z)+ = 5. The spectra at
z+ = 5 near the bottom no-slip boundary obtained from the current
DNS case R1 show good agreement with the spectra at similar loca-
tion obtained from the DNS of turbulent channel flow from Ref. 12.
Consistent with the more intensive turbulent fluctuations observed
from Fig. 4, the spectra for all the three velocity components exhibit
higher value at (H − z)+ = 5 near the free-slip boundary than those
at z+ = 5 near the no-slip boundary.

The similarities and differences in turbulence statistics near the
bottom and top boundaries can also be seen clearly from the pro-
files of Reynolds stress components in Fig. 6. Near both boundaries,
the magnitudes of turbulence variances follow the order of ⟨u′u′⟩
> ⟨v′v′⟩ > ⟨w′w′⟩. When plotted based on the wall units, the tur-
bulence variances obtained from the current DNS agree with the
experimental data from the literature.11,13 Note that all the three

FIG. 3. Mean velocity profile in (a) z/δ and (b) local wall units z+ and z+
t = (H − z)+. In panel (b), the velocity profile near the bottom boundary is plotted based on ⟨u⟩+

and z+ (solid line), the velocity profile near the top boundary is plotted based on (⟨u⟩top − ⟨u⟩)+ and z+
t (dashed line), and reference linear and logarithmic profiles are

denoted by dotted lines. In the log-law regions near the no-slip bottom boundary and free-slip top boundary, the mean velocity profiles follow ⟨u⟩+ = (1/κ) ln(z+) + B and
(⟨u⟩top − ⟨u⟩)+ = (1/κ) ln(z+

t ) + B, respectively. For the no-slip boundary case, (κ, B) = (0.41, 5.2); for the free-slip boundary case, (κ, B) = (0.41, 2).
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FIG. 4. Horizontal flow field near the bottom and top boundaries: (a) streamwise velocity fluctuation, u′; (b) spanwise velocity fluctuation, v′; (c) vertical velocity fluctuation,
w′; (d) streamwise vorticity, ωx . The velocity components are normalized by u∗ and the vorticity is normalized by u2

∗
/ν. The two horizontal planes shown in the figure are at

z = 0.03δ and z = 1.97δ, corresponding to z+ = 5 and (H − z)+ = 5, respectively.

turbulence variances approach zero toward the bottom boundary
due to the no-slip and impermeability conditions. The situation is
not the same towards the top boundary, where the free-slip condi-
tion results in high values for ⟨u′u′⟩ and ⟨v′v′⟩. The Reynolds shear

stress ⟨u′w′⟩ exhibits a nearly constant value of about 0.9u2
∗ in the

bulk flow region of the domain and approaches zero toward the
two boundaries. The close-up view of the ⟨u′w′⟩ profiles near the
two boundaries shown in Fig. 7 indicates that the Reynolds shear

FIG. 5. One-dimensional energy spec-
tra along the (a) x-direction and (b)
y-direction. The spectra obtained from
the current DNS case R1 are shown
using different line patterns. At z+

= 5: ——, Euu; – – –, Evv ; –⋅–, Eww . At
(H − z)+ = 5: — —, Euu; –⋅⋅–, Evv ; ⋅⋅⋅,
Eww . The spectra at z+ = 5 obtained
from the DNS of turbulent channel flow
from Ref. 12 are also shown using open
symbols: ◽, Euu;△, Evv ;◯, Eww .
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FIG. 6. Profiles of Reynolds stress components (normalized by u2
∗

) through the
simulation domain height. Current DNS results are denoted by lines: ——, ⟨u′u′⟩;
– – –, ⟨v′v′⟩; –⋅–, ⟨w′w′⟩; ⋅⋅⋅, ⟨u′w′⟩. Experimental data for plane turbulent Cou-
ette flow between two plates at Re∗ = 434 from Ref. 11 are denoted by symbols:
◯, ⟨u′u′⟩;△, ⟨v′v′⟩; ◽, ⟨w′w′⟩. Experimental data for plane turbulent Couette
flow between two plates at Re∗ = 134 from Ref. 13 are denoted by ×. Both z/δ
and the wall units z+ = z/(ν/u∗) are marked on the figure for the current DNS data,
but the experimental data from the literature are plotted based on the wall units z+.

stress approaches zero at different rates toward the two bound-
aries, with higher magnitude near the top free-slip boundary than
near the bottom no-slip boundary at the same distance from the
boundary.

The differences in the turbulence statistics near the bottom and
top boundaries presented in this subsection can be rooted in the
difference between the no-slip and free-slip conditions of the hor-
izontal velocity fluctuations u′ and v′. More detailed analyses are
performed by focusing on the variations of the turbulent fluctua-
tions of velocities in the near-boundary regions to help understand
the different behaviors of the Reynolds stress components near the
two different types of boundaries, which are discussed in detail in
Subsection III B.

B. Taylor series expansion analysis
of fluctuating velocities

The variation of velocity fluctuations in the near-boundary
region can be analyzed using Taylor series expansion with respect
to small z from the boundary.6,38 In this subsection, we adopt this

FIG. 7. Profiles of Reynolds shear stress ⟨u′w′⟩ (normalized by u2
∗

) near the
boundaries: ——, bottom boundary; – – –, top boundary.

analysis approach and apply it to study both the bottom and top
boundary regions.

For a point near the bottom boundary (i.e., small z) at (x, y, t),
the turbulent fluctuations of the three velocity components can be
written in Taylor series as

u′ = a1 + b1z + c1z2 + O(z3), (9)

v′ = a2 + b2z + c2z2 + O(z3), (10)

w′ = a3 + b3z + c3z2 + O(z3). (11)

By applying the no-slip boundary conditions u′ = v′ = 0 at the bot-
tom boundary z = 0, one can obtain a1 = 0 and a2 = 0 directly.
The no-slip conditions also give ∂u′/∂x = 0 and ∂v′/∂y = 0.
Applying them to the continuity equation for fluctuating velocity
gives

∂w′

∂z
= −(∂u

′

∂x
+
∂v′

∂y
) = 0 at z = 0, (12)

resulting in b3 = 0. The impermeability condition w′ = 0 at z = 0
yields a3 = 0.

By substituting these coefficients back to Eqs. (9)–(11) and
by applying time and horizontal averaging, one can estimate the
leading-order dependence of the Reynolds stress components ⟨u′iu′j⟩
on z as6

⟨u′u′⟩ = ⟨b2
1⟩z2 + O(z3), (13)

⟨v′v′⟩ = ⟨b2
2⟩z2 + O(z3), (14)

⟨w′w′⟩ = ⟨c2
3⟩z4 + O(z5), (15)

⟨u′w′⟩ = ⟨b1c3⟩z3 + O(z4). (16)

As shown in Fig. 8, the profiles of ⟨u′iu′j⟩ obtained from the current
DNS obey these predicted z-dependence near the no-slip bottom
boundary.

FIG. 8. Profiles of Reynolds stress components (normalized by u2
∗

) near the bot-
tom boundary shown in the log-log scale. The values for ⟨u′u′⟩ and ⟨v′v′⟩ are
evaluated on the regular grid points in z, and those for ⟨w′w′⟩ and ⟨−u′w′⟩ are
evaluated on the staggered grid points in z, as shown by the open symbols in the
figure. Reference lines for slopes 2, 3, and 4 are indicated by the thin solid lines in
the figure.
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Here, we can perform similar analysis for the velocity fluctu-
ations near the free-slip top boundary. For a point near the top
boundary (i.e., small zt = H − z) at (x, y, t), the turbulent fluctuations
of the three velocity components can be written in Taylor series as

u′ = α1 + β1zt + γ1z2
t + O(z3

t ), (17)

v′ = α2 + β2zt + γ2z2
t + O(z3

t ), (18)

w′ = α3 + β3zt + γ3z2
t + O(z3

t ). (19)

Similar to that at the bottom boundary, the impermeability condi-
tion w′ = 0 at zt = 0 yields α3 = 0. The free-slip condition in the
y-direction (i.e., ∂v′/∂zt = 0 at zt = 0) results in β2 = 0. In the
x-direction, the constant shear stress applied at the top boundary
yields the following three conditions:

∂u
∂zt
∣
zt=0
= τx
μ

, (20)

∂⟨u⟩
∂zt
∣
zt=0
= τx
μ

, (21)

∂u′

∂zt
∣
zt=0
= 0. (22)

The free-slip condition Eq. (22) for u′ yields β1 = 0. Note that because
of the free-slip conditions for u′ and v′ at the top boundary, the con-
tinuity equation ∂w′/∂zt = −(∂u′/∂x + ∂v′/∂y) at zt = 0 does not
give ∂w′/∂zt = 0. Therefore, the coefficient β3 is not zero in gen-
eral, causing w′ to behave differently near the top boundary than
near the bottom boundary. Substituting β1 = β2 = α3 = 0 back to
Eqs. (17)–(19), we can obtain the following equations for Reynolds
stress components ⟨u′iu′j⟩ near the free-slip top boundary:

⟨u′u′⟩ = ⟨α2
1⟩ + 2⟨α1γ1⟩z2

t + O(z3
t ), (23)

⟨v′v′⟩ = ⟨α2
2⟩ + 2⟨α2γ2⟩z2

t + O(z3
t ), (24)

⟨w′w′⟩ = ⟨β2
3⟩z2

t + O(z3
t ), (25)

⟨u′w′⟩ = ⟨α1β3⟩zt + O(z2
t ). (26)

The above analysis based on Taylor series expansion shows that
⟨u′u′⟩ and ⟨v′v′⟩ are not zero at zt = 0 and vary according to z2

t for
small zt . The vertical velocity variance ⟨w′w′⟩ varies according to z2

t
near the free-slip top boundary, which is very different from the z4-
dependence near the no-slip bottom boundary. To the leading order
in zt , the Reynolds shear stress ⟨u′w′⟩ is expected to vary linearly
with zt near the top boundary instead of the quadratic dependence
z2 near the bottom boundary.

To check if the profiles of Reynolds stress components near
the top boundary from the DNS results obey the scaling laws pre-
dicted by Eqs. (23)–(26), we define a generalized shape profile for
each component as follows:

S(⟨u′u′⟩)(zt) = ⟨u′u′⟩(zt) − ⟨u′u′⟩(zt = 0), (27)

S(⟨v′v′⟩)(zt) = −[⟨v′v′⟩(zt) − ⟨v′v′⟩(zt = 0)], (28)

S(⟨w′w′⟩)(zt) = ⟨w′w′⟩(zt) − ⟨w′w′⟩(zt = 0), (29)

S(⟨u′w′⟩)(zt) = ⟨u′w′⟩(zt) − ⟨u′w′⟩(zt = 0). (30)

These shape profiles eliminate the boundary values and convert the
near-surface values to be positive, allowing us to plot the profiles
in the log-log scale to examine the zt dependence of the profiles
near the free-slip boundary closely. Note that the additional neg-
ative sign on the right-hand side of Eq. (28) is included because
⟨v′v′⟩(zt) < ⟨v′v′⟩(zt = 0) for small zt (see Fig. 6). As shown in
Fig. 9, the generalized shape profiles obtained from the current
DNS results agree with the ∼ z2

t scaling for ⟨u′u′⟩, ⟨v′v′⟩, and
⟨w′w′⟩ predicted by Eqs. (23)–(25) and the ∼zt scaling predicted
by Eq. (26).

C. Turbulent kinetic energy budget
The mean turbulent kinetic energy (TKE) per unit mass is

defined as k = (⟨u′u′⟩ + ⟨v′v′⟩ + ⟨w′w′⟩)/2, which includes three
parts corresponding to the three velocity components. Under the
statistically steady state, the balance equations for the three TKE
components can be written as5

D
Dt
(⟨u

′u′⟩
2
)= 0 = −⟨u′w′⟩∂⟨u⟩

∂z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P1

−ν⟨∂u
′

∂x
∂u′

∂x
+
∂u′

∂y
∂u′

∂y
+
∂u′

∂z
∂u′

∂z
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E1

+ ν
∂2

∂z2 (
⟨u′u′⟩

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dν,1

− ∂

∂z
(⟨u

′u′w′⟩
2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tt,1

− ∂

∂x
⟨p
′

ρ
u′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tp,1

+ ⟨p
′

ρ
∂u′

∂x
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Π1

, (31)

FIG. 9. Generalized shape profiles of Reynolds stress components (normalized by
u2
∗

) near the top boundary shown in the log-log scale. The definitions of the gen-
eralized shape profiles S are given in Eqs. (27)–(30). The values for S(⟨u′u′⟩) and
S(⟨v′v′⟩) are evaluated on the regular grid points in z, and those for S(⟨w′w′⟩)
and S(⟨u′w′⟩) are evaluated on the staggered grid points in z, as shown by the
open symbols in the figure. Reference lines for slopes 1 and 2 are indicated by the
thin solid lines in the figure.

Phys. Fluids 31, 085113 (2019); doi: 10.1063/1.5099650 31, 085113-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

D
Dt
(⟨v

′v′⟩
2
)= 0 = −⟨v′w′⟩∂⟨v⟩

∂z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P2

−ν⟨∂v
′

∂x
∂v′

∂x
+
∂v′

∂y
∂v′

∂y
+
∂v′

∂z
∂v′

∂z
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E2

+ ν
∂2

∂z2 (
⟨v′v′⟩

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dν,2

− ∂

∂z
(⟨v

′v′w′⟩
2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tt,2

− ∂

∂y
⟨p
′

ρ
v′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tp,2

+ ⟨p
′

ρ
∂v′

∂y
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Π2

, (32)

D
Dt
(⟨w

′w′⟩
2
) = 0

= −⟨w′w′⟩∂⟨w⟩
∂z

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P3

−ν⟨∂w
′

∂x
∂w′

∂x
+
∂w′

∂y
∂w′

∂y
+
∂w′

∂z
∂w′

∂z
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E3

+ ν
∂2

∂z2 (
⟨w′w′⟩

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dν,3

− ∂

∂z
(⟨w

′w′w′⟩
2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tt,3

− ∂

∂z
⟨p
′

ρ
w′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tp,3

+ ⟨p
′

ρ
∂w′

∂z
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Π3

. (33)

Here, D/Dt = ∂/∂t + ⟨u⟩ ⋅ ∇ is the material derivative based on the
mean flow velocity. For the time and horizontal average ⟨ f ⟩ of the
physical quantity f under the statistically steady state, ∂⟨ f ⟩/∂t = 0,
∂⟨ f ⟩/∂x = 0, ∂⟨ f ⟩/∂y = 0, and ⟨w⟩ = 0, which give D⟨f ⟩/Dt = 0
for the left-hand side of each balance equation. The TKE bud-
get terms are denoted as follows: P for the production terms, E
for the dissipation terms, Dν for the molecular diffusion terms, Tt
for the turbulent transport terms, Tp for the pressure transport
terms, and Π for the pressure redistribution terms. The subscripts
“1,” “2,” and “3” indicate the terms in the x-, y-, and z-directions,
respectively.

In Eqs. (31)–(33), all the budget terms are listed including the
ones that have zero value, i.e., Tp,1, P2, Tp,2, and P3. Adding these
three equations together gives the balance equation for the total
TKE,5,6

Dk
Dt
= 0 = −⟨u′w′⟩∂⟨u⟩

∂z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

− ∂

∂z
⟨p
′

ρ
w′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tp

+ ν
∂2k
∂z2
²

Dν

−1
2
∂⟨w′u′ ⋅ u′⟩

∂z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tt

− ν⟨∇u′ : (∇u′)T⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

, (34)

where the budget terms are denoted using consistent symbols as in
Eqs. (31)–(33) but for the total TKE k. Also, note that the summa-
tion of the three pressure redistribution terms is typically not listed
in the balance equation of k because Π = ∑3

i=1 Πi = ⟨ p
′

ρ ∇ ⋅ u
′⟩= 0

for incompressible flows. The pressure redistribution terms Πi are
responsible for redistribution the TKE among different velocity
components, but the net effect on the balance of total TKE k is
zero.

Figure 10 shows the profiles of the budget terms in Eq. (34)
in the viscous boundary layers near the bottom and top bound-
aries. The current DNS results for the bottom no-slip boundary
region show good agreement with the results from Ref. 12 based
on DNS of turbulent channel flow at the same Reynolds number
of Re∗ = 180. The separated budget balances in the three direc-
tions for the current DNS according to Eqs. (31)–(33) are shown
in Fig. 11. For the no-slip boundary region, the production of TKE
occurs in the x-direction with the peak located at z+ ≈ 12. Around
its peak region, the TKE production is balanced by dissipation, tur-
bulent transport, and viscous diffusion. The dissipations in the x-
and y-directions increase toward the maximum values on the no-slip
boundary where the contributions mainly come from ⟨(∂u′/∂z)2⟩ in
E1 and ⟨(∂v′/∂z)2⟩ in E2 near the no-slip boundary. The turbulence
transports TKE toward both the boundary and the outer region,
while the viscous diffusion transports TKE mainly toward the
boundary to balance the maximum dissipation on the boundary.6

In the outer region toward the middle of the simulation domain,
the production is mostly balanced by the dissipation. The profiles

FIG. 10. Budget of turbulent kinetic energy k near the (a) no-slip bottom boundary and (b) shear-driven free-slip top boundary. Different budget terms are shown using
different line patterns: ——, production P; – – –, dissipation E; ⋅⋅⋅, turbulent transport Tt ; –⋅–, viscous diffusion Dν; –⋅⋅–, pressure transport Tp. DNS data from Ref. 12
(reproduced based on Fig. 7.18 of Ref. 6) are also denoted in panel (a) by symbols: ◽, production;◯, dissipation;▽, turbulent transport; ♢, viscous diffusion;△, pressure
transport.
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FIG. 11. Budgets of TKE components near the (a)–(c) no-slip bottom boundary and (d)–(f) shear-driven free-slip top boundary. The budget balance in three directions are
shown in three columns: (a) and (d) are for the x-direction; (b) and (e) are for the y-direction; (c) and (f) are for the z-direction. Different budget terms are shown using different
line patterns: ——, production Pi; – – –, dissipation Ei; ⋅⋅⋅, turbulent transport Tt,i; –⋅–, viscous diffusion Dν,i; –⋅⋅–, pressure transport Tp,i; — —, pressure redistribution Πi .
Note that the vertical axes in different columns have different ranges.

of the pressure redistribution terms shown in Fig. 11 indicate that
the TKE is converted from the x- and z-directions into the y-
direction in the near-surface region, and from the x-direction into
both the y- and z-directions at z+⪆13.

In contrast, the TKE balance near the free-slip boundary shows
apparent differences compared to the no-slip boundary region. The
production of TKE also occurs in the x-direction but its peak is
located at z+

t = (H − z)+ ≈ 7. Around its peak region, the
TKE production is mostly balanced by dissipation and turbulent
transport. Toward the free-slip boundary, the dissipations in the
x- and y-directions decrease to relatively small but nonzero val-
ues, for which the main contributions come from the nonzero
⟨(∂u′/∂x)2 + (∂u′/∂y)2⟩ in E1 and ⟨(∂v′/∂x)2 + (∂v′/∂y)2⟩ in E2
while both ∂u′/∂z and ∂v′/∂z become zero due to the free-slip
condition. The pressure redistribution terms in the top free-slip
boundary region show similar general trends as their counterparts
in the bottom no-slip boundary region, but all have nonzero val-
ues at the free-slip boundary due to the nonzero p′ and ∂w′/∂z
there.

Unlike at the no-slip boundary where the dissipation is bal-
anced by viscous diffusion in both the x- and y-directions, at the
free-slip boundary the balances in the three directions are different.
In the x-direction [Fig. 11(d)], at z+

t = (H − z)+ = 0, the dissipation

E1 together with a negative pressure redistribution Π1 are balanced
by the viscous diffusion Dν,1 and a small but nonzero turbulent
transport Tt,1. Note that Tt,1 can be rewritten as

Tt,1 = −
∂

∂z
(⟨u

′u′w′⟩
2

) = −⟨w′ ∂
∂z
(u
′u′

2
)⟩ − ⟨(u

′u′

2
)∂w

′

∂z
⟩. (35)

Unlike at the no-slip bottom boundary where Tt,1 = 0 because u′

= w′ = 0 and ∂w′/∂z = 0 [see Eq. (12)], at the free-slip top boundary

Tt,1 = −⟨(
u′u′

2
)∂w

′

∂z
⟩ = ⟨α2

1β3⟩ at zt = (H − z) = 0 (36)

according to Eqs. (17) and (19). In the y-direction [Fig. 11(e)], at
z+
t = (H − z)+ = 0 the flow gains TKE through a positive pressure

redistribution Π2, balanced by the combined effect of dissipation E2,
viscous diffusion Dν,2 and turbulent transport Tt,2 that have compa-
rable magnitudes. Finally in the z-direction [Fig. 11(f)], at z+

t = (H
−z)+ = 0 the flow gains TKE through the pressure transport Tp,3 and
viscous diffusion Dν,3, balanced by the dissipation E3 and pressure
redistribution Π3. Overall, the differences between the free-slip and
no-slip boundary conditions induce considerable differences in the
TKE balance statistics even though the background mean flow (i.e.,
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the mean streamwise velocity profiles) have considerable similarities
[Fig. 3(b)].

D. Statistics of vorticity fluctuations
and vortex structures

When analyzing the complex flow physics in turbulent flows,
coherent vortex structures are often found to provide valuable
insights for the three-dimensional characteristics of the turbulence
field.39,40 The differences between the no-slip and free-slip bound-
ary conditions also affect the characteristics of the vorticity field and
coherent vortex structures in the turbulent boundary layer. While
the vorticity of the flow field can be calculated directly based on
the curl of the velocity vector obtained from the DNS, the coherent
flow structures in the turbulence need to be defined and identified
based on a certain algorithm. In this paper, we adopt the widely
used λ2 method41 for identifying and visualizing the coherent vor-
tex structures in the turbulence. In particular, letting S and Ω being
the symmetric and antisymmetric parts of the velocity gradient ten-
sor ∇u, λ2 is the second largest eigenvalue of the tensor S2 + Ω2.
The vortex structures can then be visualized using the isosurfaces of
negative λ2.41 In this subsection, we take a close look of the charac-
teristics of the vortical structures near the two types of boundaries
based on both the vorticity and λ2 fields.

Figure 12 shows the two-dimensional contours of the vortic-
ity components (ωx,ω′y,ωz) on the (x, z)- and (y, z)-planes, where
ωx and ωz are the instantaneous vorticity components in the x- and
z-directions and ω′y = ωy − ⟨ωy⟩ is the turbulent fluctuation of the
instantaneous vorticity ωy in the y-direction. Note that in the tur-
bulent Couette flow considered in this study, the mean vorticities
satisfy ⟨ωx⟩ = 0, ⟨ωy⟩ ≠ 0, and ⟨ωz⟩ = 0. Thus (ωx,ω′y,ωz) repre-
sent the vorticity components associated with the turbulent fluc-
tuations of the velocity field. Near the no-slip bottom boundary,

the vorticity field obtained from the current DNS exhibits sev-
eral representative vortical structures found in previous studies of
wall turbulence,39 e.g., the contour-rotating streamwise vortex pair
marked in Fig. 12(a) and the hairpin vortices marked in Fig. 12(c).
Note that the hairpin vortices are organized in packet and their
heads (marked by the arrows) are aligned with an inclined shear
layer of strong positive ω′y associated with the ejection of low-speed
fluid flow from the boundary, which is consistent with the hair-
pin vortex autogeneration and organization mechanism found in
previous studies.40,42–44 Note that the autogeneration mechanism
of vortical structures by existing vortical structures in wall turbu-
lence requires the presence of the no-slip wall for new structures
to be formed and rolled up from the wall. In contrast, no clear
sign of hairpin vortex packets is observed near the free-slip top
boundary in Fig. 12(c). Note that the fluctuation of the spanwise
vorticity satisfies ω′y = ∂u′/∂z − ∂w′/∂x = 0 at the top bound-
ary as a result of the free-slip condition, but is significant at the
no-slip bottom boundary due to the large values of ∂u′/∂z asso-
ciated with the near-wall turbulence events such as sweeps and
ejections.12,39

The streamwise vortical structures also interact differently with
the no-slip and free-slip boundaries. Figure 13 shows the zoom-in
views of the two flow regions highlighted in Fig. 12(a). The instan-
taneous vortices are visualized using the λ2 method discussed above.
Note that each of the two streamwise vortices in Fig. 13(a) gen-
erates a streamwise vorticity field of opposite sign on the bottom
boundary due to the no-slip condition.12 Note that the streamwise
vortices can also appear individually instead of in pair39 and inter-
act similarly with the no-slip boundary. In contrast, the stream-
wise vortex shown in Fig. 13(b) does not generate opposite stream-
wise vorticity on the top boundary because the free-slip results in
ωx = ∂w/∂y − ∂v/∂z = 0. Opposite to the situation for the other two
vorticity components, the vertical vorticity ωz = ∂v/∂x − ∂u/∂y is

FIG. 12. Vorticity field from DNS case R1: (a) ωx on the (y,
z)-plane at x = 1.8δ; (b) ωz on the (y, z)-plane at x = 1.8δ;
and (c) ω′y on the (x, z)-plane at y = 0.8δ. The vorticities are
normalized by u∗2/ν. Two sample regions (1) and (2) are
marked in (a) and their corresponding zoom-in views are
shown in Fig. 13.
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FIG. 13. Zoom-in view of the flow fields around the regions (1) and (2) marked in Fig. 12(a). (a) is for region (1) and (b) is for region (2). The contours of ωx (normalized by
u∗2/ν) are shown on the (y, z)-plane at x = 1.8δ in each panel. The instantaneous three-dimensional vortex structures are visualized using the isosurfaces of λ2 = −0.05
(in gray color).

zero at the no-slip boundary but can be significant at the free-slip
boundary where u and v are allowed to vary horizontally. This
can be seen from Fig. 12(b), in which the ωz contours vanish
toward the bottom boundary but remain significant toward the top
boundary.

The different characteristics of the vorticity fields near the two
types of boundaries can also been analyzed statistically. Figure 14
shows the profiles of the root-mean-square (rms) vorticity fluctua-
tions ⟨ω′i⟩rms and also compares the values near the bottom no-slip
boundary from the current DNS with the DNS results of Ref. 12 and
experimental data of Ref. 45 for fully developed turbulent channel
flows. Good agreement is found between the current DNS results
and the data from the literature. Figure 14 also shows clearly that
towards the free-slip top boundary ⟨ω′x⟩rms and ⟨ω′y⟩rms become
zero while ⟨ω′z⟩rms is significant, which are opposite to the counter-
parts near the no-slip bottom boundary where ⟨ω′x⟩rms and ⟨ω′y⟩rms

FIG. 14. Profiles of root-mean-square vorticity fluctuations (normalized by u∗2/ν).
Results based on the current DNS case R1 are denoted by lines: ——, ⟨ω′x⟩rms;
– – –, ⟨ω′y⟩rms; –⋅–, ⟨ω′z⟩rms. DNS results for channel flow from DNS data from
Ref. 12 are denoted by open symbols: ◯, ⟨ω′x⟩rms; △, ⟨ω′y⟩rms; ◽, ⟨ω′z⟩rms.
Experimental data of ⟨ω′x⟩rms for turbulent channel flow from Ref. 45 are denoted
by •. Both z/δ and the wall units z+ = z/(ν/u∗) are marked on the figure for the cur-
rent DNS data, but the DNS and experimental data from the literature are plotted
based on the wall units z+.

have their maximum values at the boundary but ⟨ω′z⟩rms becomes
zero.

Quantifying the characteristics of the coherent vortex struc-
tures in turbulent flows are often very challenging, as illustrated by
the complexity of the instantaneous vortex field shown in Fig. 15.
Conditional averaging techniques have been shown to provide
valuable information about the characteristics of coherent flow
structures in turbulent flows.46–49 In this study, we employ the
variable-interval space-averaging (VISA) method47 to identify the
representative coherent vortex structures in the flow regions near
the bottom and top boundaries and elucidate the effects of differ-
ent boundary conditions on the characteristics of the vortices. As
shown in Fig. 15, the quasistreamwise vortices are the dominant
vortex structures near both the bottom and top boundaries. Fol-
lowing Refs. 47 and 49, we define the VISA value of the streamwise
vorticity as

ω̂x(x, y, z, t,Wx,Wy) ≡
1

4WxWy
∫

x+Wx

x−Wx
∫

y+Wy

y−Wy

ωx(ξ,ψ, z, t)dξdψ,

(37)

FIG. 15. Instantaneous vortex structures from case R1 visualized using the
isosurface of λ2 = −0.02.
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FIG. 16. Conditionally averaged vortex structure near the bottom boundary obtained by the applying VISA method based on positive streamwise vorticity ωx . The vortex
structure is visualized using the isosurface of λ2 = −0.02. (a) shows the top view with the contour lines of u′/u∗ shown on the (x, y)-plane at z+ = 15, and (b) shows the side
view with the contour lines of u′/u∗ shown on the (x, z)-plane at the center of the conditional average domain. The contour levels have a fixed interval of 0.4.

where Wx and Wy are the half-widths of the horizontal averaging window for VISA, and are set to 70 and 35 wall units in this study,
respectively. The local variance of ωx is then calculated as

ωvar
x (x, y, z, t) ≡ ω2

x(x, y, z, t) − ω̂2
x(x, y, z, t,Wx,Wy). (38)

Samples for conditional average are detected by applying the following criterion at a detection height zd:

D(x, y, zd, t) =
⎧⎪⎪⎨⎪⎪⎩

1, if ωvar
x (x, y, zd, t) > c[⟨ω′x⟩rms(zd)]2 and ωx(x, y, zd, t) > 0,

0, otherwise.
(39)

In the current analysis, the threshold level for the criterion is set to
be c = 10. The detection vertical level is set to be z+

d = 15 for condi-
tional sampling near the bottom boundary, and (H−zd)+ = 8 for the
top boundary, which are chosen based on the two peaks of ⟨ω′x⟩rms
shown in Fig. 14. We use 90 three-dimensional instantaneous snap-
shots obtained from the DNS separated by a constant time interval
of Δt+ = Δt/(ν/u2

∗) = 14. Based on Eq. (39), a total of 57 163 sam-
ples are identified near the bottom boundary and 59 227 samples are
taken near the top boundary.

Figures 16 and 17 show the VISA conditionally averaged flow
structures educed from the instantaneous flow fields near the bottom
and top boundaries, respectively. In both figures, a well-organized
quasistreamwise vortex with ωx > 0 is obtained from the condi-
tional average. As shown in Fig. 16(a), the vortex near the bot-
tom boundary induces positive u′ on its right side (when viewed

from the top) due to sweep of high-speed flow toward the bound-
ary and negative u′ on its left side due to the ejection of low-
speed flow away from the near-boundary region. Although Fig. 17(a)
shows a similar general flow patten for the top boundary case, in
this case the positive u′ on its right side corresponds to the “ejec-
tion” of high-speed flow away from the top free-slip boundary and
the negative u′ on its left side corresponds to the “sweep” of low-
speed flow towards the top boundary due to the local mean veloc-
ity gradient near the top boundary (see Fig. 3). It is also worth
mentioning that both Figs. 16(a) and 17(a) indicate that the aver-
aged streamwise vortex has a nonzero inclination angle on the
horizontal plane with respect to the streamwise direction x, but
the angle for the vortex near the no-slip boundary is much larger
than that for the free-slip case, i.e., 12○ in Fig. 16(a) vs 5○ in
Fig. 17(a).

FIG. 17. Conditionally averaged vortex structure near the top boundary obtained by applying the VISA method based on positive streamwise vorticity ωx . The vortex structure
is visualized using the isosurface of λ2 = −0.02. (a) shows the top view with the contour lines of u′/u∗ shown on the (x, y)-plane at (H − z)+ = 8, and (b) shows the side view
with the contour lines of u′/u∗ shown on the (x, z)-plane at the center of the conditional average domain. The contour levels have a fixed interval of 0.4.
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The vertical distances of the conditionally averaged vortices to
the corresponding boundaries also appear to be different, with a
smaller distance for the vortex next to the free-slip top boundary
as shown in Fig. 17. This is not surprising because of the differences
in the detection vertical levels z+

d = 15 and (H − zd)+ = 8 used in
the VISA for the bottom and top boundaries, respectively, which
are chosen based on the profiles of ⟨ω′x⟩rms (Fig. 14). The combined
effect of this closer distance and the free-slip boundary condition
turns out to significantly increase the computational cost for DNS
of shear turbulence with free-slip boundary, which is discussed in
Subsection III E.

The differences in the inclination angle and vertical distance
observed from the conditional average results in Figs. 16 and 17
can be linked back to how the vortices interact with different types
of boundaries. As shown in Fig. 13(a), a streamwise vortex in the
near-boundary region can generate a secondary rotational flow field

FIG. 18. Comparison of instantaneous vortex structures near the bottom boundary
obtained from DNS with different grid numbers: (a) case R1 with 384 × 384 × 193
grid points; (b) case R2 with 192 × 192 × 193 grid points; and (c) case R3 with
128 × 128 × 129 grid points. The bottom half-domain of 0 ≤ z ≤ H/2 is shown for
each case. The vortices are visualized using the isosurfaces of λ2 = −0.04 and
colored based on the value of ωx . Both λ2 and ωx are presented in wall units.

adjacent to the bottom boundary with opposite sign of ωx due to
the no-slip condition.12 The mutual induction between these pri-
mary and secondary streamwise vortices causes the inclination of
the primary vortex in the horizontal plane and lifts it further away
from the no-slip boundary.42,50 The lack of the generation of the sec-
ondary streamwise vorticity on the free-slip boundary significantly
weakens the mutual induction between the vortex structure and the
top boundary, resulting in smaller horizontal inclination angle and
vertical distance from the free-slip boundary.

E. Effect of free-slip boundary condition
on computational cost

The DNS results presented in Secs. III A–III D show apparent
differences in the statistics of shear turbulence near the free-slip and
no-slip boundaries, which can also impose different computational
requirements on the DNS in order to properly resolve these different

FIG. 19. Comparison of instantaneous vortex structures near the top boundary
obtained from DNS with different grid numbers: (a) case R1 with 384 × 384 × 193
grid points; (b) case R2 with 192 × 192 × 193 grid points; and (c) case R3 with
128 × 128 × 129 grid points. The top half-domain of H/2 ≤ z ≤ H is shown for each
case. The vortices are visualized using the isosurfaces of λ2 = −0.04 and colored
based on the value of ωx . Both λ2 and ωx are presented in wall units.
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flow features. To check the effect of the free-slip boundary condi-
tion on the computational cost of DNS, in this section we present
and discuss the simulation results of cases R1, R2, and R3 that are
obtained using different grid resolutions. Case R1 has the finest grid
resolutions in all the three directions among the three cases. Case
R2 has identical vertical grid resolution as case R1, but uses coarser
grid resolutions in the horizontal directions (i.e., twice the sizes of
Δx+ and Δy+ used in case R1). Case R3 has coarser grid resolutions
in all the three directions than cases R1 and R2. In order to make a
direct comparison, all three cases use the same instantaneous flow
field obtained from case R1 as the initial condition, with the lower
resolution initial conditions for cases R1 and R2 constructed by trun-
cating the additional Fourier modes in the x- and y-directions, as
well as linear interpolation in the z-direction (for case R3 due to its
different vertical grid resolution from case R1).

For comparison, Fig. 18 shows the instantaneous vortex struc-
tures near the bottom boundary from the three cases after the flow
fields are advanced in time by 50 viscous time units. For all the
three different grid resolutions considered in cases R1–R3, the vor-
tex structures near the bottom no-slip boundary are well resolved
by the DNS. Near the free-slip boundary, the situation becomes
quite different. As shown in Fig. 19, the primary DNS case R1 can
resolve the vortex structures smoothly with its high grid resolution,
but the other two lower resolution cases showing sign of numerical
instability. The visualized instantaneous vortices in Fig. 19(c) show

that the grid resolution used in case R3 is insufficient to resolve the
small-scale features of the vortex structures very close to the free-slip
boundary, resulting in shattering of vortex structures.

Figures 20 and 21 show contours of the velocity and vorticity
components on the horizontal plane at (H − z)+ = 5.4 obtained from
the three DNS cases, respectively. The primary DNS case R1 shows
smooth results for both the velocity and vorticity fields resolved by
its high grid resolution. The lower resolution cases R2 and R3 exhibit
clear numerical oscillations that can be seen from the unsmooth
velocity and vorticity contours, for which some sample regions are
marked in Figs. 20 and 21 for demonstration purpose.

The effects of the horizontal grid resolutions on the DNS
results from cases R1–R3 can also be seen from the energy spectra.
Figure 22 shows the one-dimensional streamwise and spanwise tur-
bulent kinetic energy spectra of the three velocity components near
the no-slip bottom boundary at z+ = 5. The spectra from the lower
resolution cases R2 and R3 show good agreement with the higher
resolution case R1, and there is no clear pileup of turbulent kinetic
energy at the high wavenumbers. For comparison, Fig. 23 shows the
corresponding spectra near the free-slip top boundary at (H − z)+

= 5. Although the spectra from cases R2 and R3 show good agree-
ment with that from case R1 at low wavenumbers, the two lower res-
olutions cases do exhibit clear energy pileup at high wavenumbers,
suggesting the insufficient horizontal grid resolutions for resolving
the turbulent fluctuations at small length scales.

FIG. 20. Comparison of instantaneous velocities on the (x, y)-plane at (H − z)+ = 5.4 obtained from DNS with different grid resolutions: [(a)–(c)] case R1; [(d)–(f)] case R2;
and [(g)–(i)] case R3. Three different velocity components are shown: (a), (d), and (g) for streamwise velocity fluctuation u′; (b), (e), and (h) for spanwise velocity v; (c), (f),
and (i) for vertical velocity w. The velocity components are normalized by u∗. Some sample regions of unsmooth velocity fields in case R3 are marked by the rectangular
boxes with black dashed lines in (g) and (h).
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FIG. 21. Comparison of instantaneous vorticities on the (x, y)-plane at (H − z)+ = 5.4 obtained from DNS with different grid resolutions: [(a)–(c)] case R1; [(d)–(f)] case R2;
and [(g)–(i)] case R3. Three different vorticity components are shown: (a), (d), and (g) for streamwise vorticity ωx ; (b), (e), and (h) for spanwise vorticity ωy ; and (c), (f),
and (i) for vertical vorticity ωz . The vorticity components are normalized by u2

∗
/ν. Some sample regions of unsmooth vorticity fields in cases R2 and R3 are marked by the

rectangular boxes with black dashed lines in (e) and (g)–(i).

Overall, the comparisons of the instantaneous flow structures
near the bottom and top boundaries obtained from the three differ-
ent DNS grid resolutions indicate that it is computationally much
more expensive to smoothly resolve the turbulent flow physics near
a free-slip boundary than near a no-slip boundary. Note that the
case R3 has comparable grid resolution as other prior DNS studies
of turbulent flows over no-slip boundary (see Table I) and is found

to well capture the essential turbulent flow structures near the bot-
tom boundary in the current DNS [Fig. 18(c)]. Case R2 has identical
vertical grid resolution as case R1 but with lower horizontal grid res-
olutions and is unable to obtain smooth flow field as in case R1. This
suggests that increased grid resolutions are needed in the horizon-
tal directions to resolve the small-scale flow features occurring near
the free-slip top boundary. Note that the TKE budget analysis results

FIG. 22. One-dimensional energy spec-
tra near the no-slip bottom boundary at
z+ = 5 along the (a) x-direction and (b)
y-direction. For case R1 with 384 × 384
× 193 grid points: ——, Euu; – – –, Evv ;
–⋅–, Eww . For case R2 with 192 × 192
× 193 grid points: ◽, Euu; △, Evv ; ◯,
Eww . For case R3 with 128 × 128 × 129
grid points: ∎, Euu;▲, Evv ; •, Eww .
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FIG. 23. One-dimensional energy spec-
tra near the free-slip top boundary at
(H − z)+ = 5 along the (a) x-direction
and (b) y-direction. For case R1 with 384
× 384 × 193 grid points: ——, Euu; – – –,
Evv ; –⋅–, Eww . For case R2 with 192
× 192 × 193 grid points: ◽, Euu;△, Evv ;
◯, Eww . For case R3 with 128 × 128
× 129 grid points: ∎, Euu; ▲, Evv ; •,
Eww .

shown in Figs. 10 and 11 indicate that the magnitudes of the vis-
cous diffusion and dissipation are large near the no-slip boundary,
but become small toward the free-slip boundary. The lower inten-
sities for the viscous diffusion and dissipation allow the small-scale
turbulent fluctuations to remain energetic very close to the free-slip
boundary, which may demand finer horizontal grid resolutions to
resolve them.

IV. CONCLUSIONS
In this study, we perform DNS to study the effects of a free-

slip boundary on the characteristics of shear turbulence. We set
up an idealized flow system in the DNS with a no-slip imperme-
able bottom boundary and a free-slip impermeable top boundary.
The flow is driven by a constant shear stress imposed on the top
boundary in the x-direction, which generates a Couette type tur-
bulent flow in the simulation with a friction Reynolds number of
Re∗ = 180. Such a flow configuration provides both no-slip and free-
slip boundaries with identical friction velocity so that the turbulent
flow statistics near the two types of boundaries can be compared to
help understand the effect of free-slip boundary on shear turbulence.

Using the DNS data, the statistics of the turbulent flow are stud-
ied systematically. Comparison of the turbulence statistics reveals
that the free-slip condition of the top boundary causes considerable
differences in both the mean and fluctuating velocities compared to
the no-slip boundary case. The mean velocity profile near the free-
slip boundary exhibits a similar basic structure as the counterpart
near the no-slip boundary, i.e., a linear profile in the viscous sub-
layer and a logarithmic profile in the log-law region. However, near
the free-slip boundary, the viscous sublayer only extends to about
z+ ≈ 2, which is smaller than the classical value of z+ ≈ 5 for the
no-slip boundary case. The profile offset constant for the logarith-
mic profile in the free-slip condition case also has a smaller value of
B ≈ 2 compared to B ≈ 5 for the no-slip boundary case.

Statistical analysis and theoretical prediction based Taylor
series expansion show that the Reynolds stress components also have
different dependences on the vertical coordinate near the no-slip and
free-slip boundaries. Near the no-slip boundary, all the Reynolds

stress components are zero at the boundary and scale as ⟨u′u′⟩(z)
∼ z2, ⟨v′v′⟩(z) ∼ z2, ⟨w′w′⟩(z) ∼ z4, and ⟨u′w′⟩(z) ∼ z3 for small z.
Near the free-slip boundary where zt = H − z is small, ⟨u′u′⟩
and ⟨v′v′⟩ are not zero at the boundary and scale as [⟨u′u′⟩(zt)
− ⟨u′u′⟩(zt = 0)] ∼ z2

t and [⟨v′v′⟩(zt) − ⟨v′v′⟩(zt = 0)] ∼ z2
t

with a similar quadratic profile shape as near the no-slip boundary;
the other two Reynolds stress components near the free-slip bound-
ary behave very differently from the counterparts near the no-slip
boundary, following ⟨w′w′⟩(zt) ∼ z2

t and ⟨u′w′⟩(zt) ∼ zt for small zt .
Further analysis on the TKE balances also reveals considerable dif-
ferences in the behaviors of TKE budget terms near the no-slip and
free-slip boundaries.

The free-slip condition of the top boundary in the current flow
configuration also affects how vortical structures interact with the
boundary. While the streamwise vorticity ωx and spanwise vorticity
fluctuation ω′y are zero at the free-slip boundary, the vertical vortic-
ity ωz is not zero and can vary in space and time. This is opposite to
the situation at the no-slip boundary where ωx and ω′y are large and
ωz = 0. Direct observation of the instantaneous vortices in the simu-
lated flow field and conditional averaging based on the VISA method
show that the dominant vortex structures, i.e., quasistreamwise vor-
tices, have different horizontal inclination angles with respect to
the streamwise direction and different vertical distances from the
neighboring boundaries in the no-slip and free-slip boundary cases.
The VISA averaged vortex from the free-slip boundary region has
a smaller inclination angle (i.e., more aligned with the streamwise
direction) and is located closer to boundary than its counterpart in
the no-slip boundary region.

Finally, the different velocity boundary conditions induced by
the free-slip and no-slip boundaries impose different computational
requirements on DNS. The relatively weak dissipation of turbulence
near the free-slip boundary results in higher turbulence intensity
and smaller scale flow features than those near the no-slip bound-
ary, which can significantly increase the computational cost of DNS
in order to smoothly resolve turbulent flow field near the free-slip
surface. The comparison of DNS results near the two types of bound-
aries reported in this study suggests that cautions should be taken
when setting up future DNS runs of shear-driven turbulence over
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free-slip surface if one wants to choose the DNS grid resolutions
based on previously reported DNS runs of no-slip boundary cases.

ACKNOWLEDGMENTS
This research was supported by Di Yang’s start-up funds at

the University of Houston. The authors acknowledge the use of the
Opuntia Cluster and the advanced support from the Core Facil-
ity for Advanced Computing and Data Science at the University of
Houston to carry out the numerical simulations presented here.

APPENDIX: VERTICAL COMPUTATIONAL
GRID DISTRIBUTION

In the current DNS, a staggered vertical grid system is used
for spatial discretization in the z-direction. More details of the

staggered grid system can be found in Ref. 34. The vertical grids
are not evenly spaced and are clustered towards the bottom and top
boundaries where the vertical gradient of the streamwise velocity is
large.

For a vertical grid point with index k, the correspond-
ing vertical coordinate z(k) and grid space Δz(k) are calculated
according to

z(k) = ζ(k) − ζ(1)
ζ(Nz) − ζ(1)

H, (A1)

Δz(k) = z(k + 1) − z(k), (A2)

where ζ(1) = 0 and ζ(k) = ζ(1) + ∑k−1
1 Δζ(k) for 1 < k ≤ Nz . The

spacing function Δζ(k) is defined as

Δζ(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1 − cos[2πξ(k)]}(γ − 1)
2

+ 1, if Nb ≤ k ≤ Nz −Nb,

ζ(Nb), if 1 < k < Nb or Nz −Nb < k < Nz − 1,
ζ(Nb)/2, if k = 1,
ζ(Nb)/2, if k = Nz − 1,

(A3)

where

ξ(k) = 1
2
{1 +

sinh[β(2η(k) − 1)]
sinh(β) }, (A4)

η(k) = k −Nb

Nz − 2Nb
. (A5)

The grid clustering is controlled by two parameters, i.e., β for the
range of clustering and γ for the largest grid space ratio. The first
Nb = 4 grid points near the bottom and top boundaries are spaced
equally to allow simplification of the finite difference scheme near
the boundaries. Figure 24 illustrates the vertical grid clustering based
on Nz = 65. Three different combinations of (β, γ) are shown.

FIG. 24. Illustration of vertical grid clustering for Nz = 65. The normalized vertical
coordinate z/H is plotted as a function of the grid index k.

When γ = 1, the grids are evenly spaced. In this study, the verti-
cal grids for the three DNS cases are all generated according to the
above grid clustering functions with (β, γ) = (1.5, 15) based on the
corresponding vertical grid numbers Nz shown in Table I.
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