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Abstract

We perform a simulation based study of strong free-
surface turbulence (SFST) aiming at a fundamen-
tal understanding of the flow physics. Using hybrid
Eulerian simulation, we obtain finely-resolved turbu-
lence and wave fields as the database for systematic
analysis. Different flow regimes are demonstrated by
the representative instantaneous surface geometries.
Surface elevation spectra show significant difference
among flows with different gravity and surface tension
effects. Volume fraction in the air–water mixed flow,
turbulent velocity fluctuation, and phase averaged
Reynolds stress are quantified. Instantaneous flow
structures that affect the surface geometry and the
turbulence statistics are discussed. Dissipation and
turbulence transportation induced by surface break-
ing are demonstrated, and the enhancement effect on
the turbulence beneath is elucidated. We also use
a decomposition scheme to distinguish the wave and
turbulence effects. The results of this study may be
useful for the development of improved turbulence
models for SFST and steep/breaking waves (SBW).

1 INTRODUCTION

Modeling of violent free-surface turbulent flows,
which is of vital importance to many naval applica-
tions, requires a deep understanding of the fundamen-
tal physics of SFST. The interaction of turbulence
with surface waves is complex in many ways. For ex-
ample, the turbulence can be substantially distorted
by the periodic orbital motion and the surface drift
associated with the waves. Wave breaking is an im-

∗Email address for correspondence: LianShen@jhu.edu.

portant source of turbulence in upper ocean and near
naval structures. On the other hand, the turbulence
scatters and dissipates surface waves. The turbulence
pressure and shear stress may also amplify waves and
trigger wave breaking (Guo & Shen, 2010).

The complex surface processes pose great
challenges to the simulation of SFST. For direct nu-
merical simulation (DNS), the violent surface motion
makes the kinematic and dynamic boundary condi-
tions difficult to represent in numerical schemes (cf.
the discussion in Shen, 2007). For large-eddy sim-
ulation (LES), besides the question of the applica-
bility of subgrid-scale (SGS) models originally devel-
oped for other flows (Shen & Yue, 2001), the multi-
phase nature of SFST also introduces issues in the
formulation of LES itself. For example, new fil-
ters based on component-weighted, volume-averaging
procedure are required; commutativity between filter
and derivative needs to be accounted for; and ad-
ditional interfacial SGS terms need to be modeled
(Reboux, Sagaut & Lakehal, 2006; Labourasse et al.
2007; Liovic & Lakehal, 2007).

Accurate simulation and prediction of free-
surface turbulent flows requires high-fidelity numer-
ical schemes and innovative analysis and modeling
approaches. Recently, we combined the strengths of
state-of-the-art level set (LS) method, volume of fluid
(VOF) method, and ghost fluid (GF) method to de-
velop a hybrid simulation capability for SFST. We
also developed a scheme to identify wave and turbu-
lence components in the flow (Guo & Shen, 2009).
This decomposition helps us understand the differ-
ent roles that wave and turbulence play in interfacial
processes. It also elucidates the modulation dynam-
ics of waves by SFST and the distortion mechanism
of turbulence by large-amplitude surface waves.

1



2 PROBLEM SETUP AND
NUMERICAL APPROACH

2.1 Setup of numerical simulation

We consider the simulation of a canonical free-surface
and turbulence interaction problem (Fig.1) with DNS
method. In this simulation, turbulence is generated
in the deep water and is then transported to the free
surface to interact with the surface. The air part
is initially quiescent and its motion is driven by the
water side. Because of the very small air-to-water
density ratio, the influence of air on the water motion
is relatively weak, and the motion of the free surface
is mainly generated by the turbulence in the water.

To obtain steady free-surface turbulence
statistics, we choose a forced turbulence field in the
deep water as the turbulence source. We adopt a lin-
ear forcing method (Lungren, 2003; Rosales & Men-
eveau, 2005) to generate quasi-steady isotropic ho-
mogeneous turbulence. In this method, a body force
proportional to the turbulent velocity is added to the
momentum equations:

∂~u

∂t
+~u·∇~u =

1
ρ
(−∇p+∇·τ+ρ~g+σκδ(~xs)+c0F (zc)~u′).

(1)
Here ~u is the velocity vector; ~u′ is the velocity fluc-
tuation. Since there is no mean flow in this prob-
lem, ~u′ = ~u. And ρ is the density; p is the pressure;
τ = µ(∇~u +∇~uT ) is the shear stress tensor; µ is the
dynamic viscosity; ~g is the gravitational acceleration;
σ is the surface tension coefficient; κ is the surface
curvature; ~xs denoted the surface location; δ(x) is
the Dirac delta function; zc is the vertical coordinate
with its origin located at the center of the water do-
main; F (zc) is the forcing distribution function; c0

is the forcing coefficient. The function F (zc) has the
form

F (zc) =





1, zc ≤ lb, bulk region,
1
2

(
1− cos

[
π
ld

(zc − lb − ld)
])

,

lb < zc ≤ lb + ld, damping region,
0, zc > lb + ld, free region,

(2)
which is symmetric about the origin zc = 0. The
forcing coefficient c0 is prescribed and it determines
the strength of the turbulence generated.

With the linear forcing, steady isotropic and
homogeneous turbulence is generated at the center
of the forcing region. The turbulence is then trans-
ported upward from the deep water to the free surface

to disturb the surface and generate waves, dimples,
scars, and even spays and bubbles.
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Figure 1: Sketch of the multi-phase flow simulation
setup of the free-surface turbulence problem.

2.2 Simulation parameters

After non-dimensionalization with a length scale L,
velocity scale U and the density of water ρw, the
Navier-Stokes equations become

∂~̃u

∂t̃
+ ~̃u · ∇̃~̃u = −∇̃p̃

ρ̃
+

1
Re

1
ρ̃
∇̃ · τ̃ +

1
Fr2

~k

+
1

We

1
ρ̃
κ̃δ(~̃xs) + c̃0F (z̃c)~̃u′. (3)

Here all quantities with tilde are non-dimensionalized
(hereafter we omit the tilde for simplicity); ~k is the
unit vector in the gravity direction; Re = UL/ν is
the Reynolds number; Fr =

√
U2/gL is the Froude

number; We = ρU2L/σ is the Weber number. The
dimensionless domain size is Lx × Ly × Lz = 2π ×
2π × 6.5π and the mean water level is at z = 5π.

In the free surface–turbulence interaction
process, gravity and surface tension play an impor-
tant role in stabilizing the surface from the distur-
bance of the turbulence beneath. Let q denote the
turbulence velocity fluctuation magnitude and l the
turbulence integral scale. According to Brocchini &
Peregrine (2001), the influence of gravity and sur-
face tension can be characterized by four flow regimes
in the q − l space as: weak turbulence regime, sur-
face tension dominated regime, gravity dominated
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Figure 2: Diagram of the flow regimes in the Fr−We
space. Region 0: weak turbulence regime; region
1: surface tension dominated regime; region 2: very
strong turbulence regime; region 3: gravity domi-
nated regime. The region between the two dash lines
represents the marginal breaking region obtained by
Brochini & Peregrine (2001).

regime, and very strong turbulence regime. After
non-dimensionalization, the effects of gravity and sur-
face tension are represented by Fr and We, respec-
tively. In this study, Re = 1000 and c0 = 0.1 are
fixed. We map the four flow regimes in the Fr−We
space as shown in Fig.2. The marginal breaking re-
gion is marked by two colored dash lines.

2.3 Numerical approach

In this study, we develop a coupled LS/VOF/GF ap-
proach. Being a front capturing Eulerian method us-
ing an LS function, it handles surface pinching off
and reconnection naturally on Eulerian grid, which
facilitates the simulation of SFST and SBW.

In the LS method (Sussman, Smereka and
Osher 1994; Sussman et al. 1998), the free surface
is represented implicitly by the signed distance (LS)
function (Fig.3)

φ(~x, t) =





d in water,
0 on surface,
−d in air.

(4)

Here d is the distance from point ~x to the free surface.

φ<0

φ>0

φ=0

air

water

free surface

ρa, µa

ρw, µw

Figure 3: Sketch of the level set function.

The LS function is advected by the flow:

∂φ

∂t
+ ~u · ∇φ = 0. (5)

The above equation cannot guarantee the signed dis-
tance property of the LS function as time evolves, and
a reinitialization procedure is needed. The following
equation

∂φc

∂τ
+ sign(φ)(|∇φc| − 1) = 0 (6)

is used to correct φ. Here τ is artificial time. Initial
condition is φc(~x, 0) = φ(~x). After Eqn. 6 is solved
to a steady state, φ takes the value of φc.

Using φ, the surface normal vector and the
curvature are calculated as

~n =
∇φ

|∇φ| , (7)

and

κ = ∇ · ~n = ∇ · ∇φ

|∇φ| . (8)

The density and viscosity in the multi-fluid flow field
are written as

{
ρ(φ) = ρwH(φ) + ρa(1−H(φ)),
µ(φ) = µwH(φ) + µa(1−H(φ)). (9)

Here ρw, ρa and µw, µa are the densities and vis-
cosities of water and air, respectively; H(x) is the
Heaviside step function.

The Navier-Stokes equations for air and wa-
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ter are now written as one equation

∂~u
∂t +∇ · (~u~u) = − 1

ρ(φ)∇p + 1
Re

1
ρ(φ)∇ · (2µ(φ)D̄)

+ 1
Fr2

~k + 1
We

1
ρ(φ)κδ(φ)~n

+c0F (zc)~u′.
(10)

Here D̄ = 1
2 (∇~u +∇~uT ) is the strain rate tensor.

To improve the mass conservation, the VOF
method is coupled with the LS method (Sussman and
Puckett, 2000). The following VOF equation

∂F

∂t
+ ~u · ∇F = 0 (11)

is solved together with the LS equation. Here F is
the volume fraction of water in each computational
cell. Since F has a sharp jump across the interface,
the above equation cannot be discretized directly. In-
stead, the interface is reconstructed through a piece-
wise linear interface construction (PLIC) method and
is used to calculate the volume flux in Eq.11 (Rider
& Kothe, 1998). The VOF method uses the surface
normal calculated from the LS function to reconstruct
the surface and the VOF function is used to correct
the LS function at the interface (Fig.4).

Figure 4: Schematics of the coupled LS and VOF
method

The GF method (Kang, Fedkiw and Liu
2000; Liu, Fedkiw and Kang 2000) is incorporated
to treat the interface in a sharp fashion. It captures
the boundary conditions at the contact discontinuity
without numerical smearing. The following interface
jump condition







~N
~T1

~T2


 (pI− τ) ~NT


 =




σκ
0
0


 (12)

is implemented. Here ~N is the unit normal vector of
the free surface; ~T1 and ~T2 are the two unit tangent
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Figure 5: (a) Sketch of GF method. (b) Pressure dis-
tribution of a static bubble in water without gravity
effect calculated by GF method.

vectors; [ · ] denotes the jump across the interface.
Combined with the continuity condition at the inter-
face, the above jump condition is rewritten as the
stress jump condition




[µux] [µuy] [µuz]
[µvx] [µvy] [µvz]
[µwx] [µwy] [µwz]


 =

[µ]




∇u
∇v
∇w







~0
~T1

~T2




T 


~0
~T1

~T2




+[µ] ~NT ~N




∇u
∇v
∇w


 ~NT ~N

−[µ]




~0
~T1

~T2




T 


~0
~T1

~T2







∇u
∇v
∇w


 ~NT ~N,

(13)

and the pressure jump condition

[p] = 2[µ](∇u · ~N,∇v · ~N,∇w · ~N) · ~N + σκ. (14)

With the gravity terms absorbed to the pressure, the
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dynamic pressure jump condition becomes

[p] = 2[µ](∇u· ~N,∇v· ~N,∇w· ~N)· ~N+σκ+[ρ]gz. (15)

The stress and pressure jump conditions are then
treated with the GF method. In Fig.5, the pressure
field of a static bubble in the water is simulated with
the GF method, the sharp pressure jump induced by
the surface tension is presented.

The incorporation of the GF method pre-
vents numerical contamination due to density, viscos-
ity, and surface tension smoothing in the traditional
LS method. With this hybrid approach, the inter-
facial flow structure is accurately captured, which
provides valuable information on the physics of the
free-surface flow.

3 RESULTS

3.1 Free surface disturbed by turbu-
lence

We first discuss the geometrical characteristics of the
free surface, which is disturbed by the turbulence
underneath. The aforementioned four flow regimes
have substantially different appearance in the instan-
taneous free surface.

Weak turbulence regime

In this regime (region 0 in Fig.2a), turbulence distur-
bance to the free surface is relatively weak because
of the large gravity and surface tension stabilizing
effects. The free surface appears flat and smooth,
as shown in Fig. 6(a) where instantaneous elevation
contours for the case of (Fr2 = 0.8,We = 40) are
plotted. For flows in this regime, the dynamic and
kinematic free surface boundary conditions can be
linearized to simplify the simulation, and analysis of
one phase fluid is often performed.

Surface tension dominated regime

In this regime (region 1 in Fig.2b), the surface ten-
sion effect is strong and the gravity effect is weak.
The cohesion of the water is maintained by the sur-
face tension, and the surface is smooth. Because the
gravity effect is small, it cannot keep the surface flat.
As a result, the surface has a smooth round shape
(Fig.6b), which is called “knobbly” by Brocchini &
Peregrine (2001).

Gravity dominated regime

This regime (region 3 in Fig.2c) is the most com-
mon one that is often observed in oceans, lakes, and
rivers. Due to the gravity effect, if the turbulence
is not strong enough, the surface cannot have very
large deformation. But small scale surface structures
such as dimples, scars, and waves are often present.
In Fig.6(c), an instantaneous surface for the case of
(Fr2 = 4,We = ∞) is shown. A scar is observed on
the left corner, and some dimples also exist nearby.

Very strong turbulence regime

In this flow regime (region 2 in Fig.2d), both the grav-
ity and surface tension effects are weak. The motion
at the free surface is violent, and the surface cannot
keep flat or smooth. The turbulence can bring the
water to a significant height and make the surface
break. Large amount of spays and air entrainments
may occur. The region near the surface becomes a
air-water mixture. In Fig.6(d), an instantaneous sur-
face for the case of (Fr2 = 32,We = 1) is shown. At
this moment, the surface geometry is quite complex.
The surface elevation cannot be described by a single-
value function because the surface is multi-connected.
Water jet shoots up and reenters the water later,
playing an important role in the atmosphere–ocean
exchange of mass, momentum, and energy.

3.2 Surface spectra

Having illustrating the instantaneous surface eleva-
tion, we next present its spectral statistics, which
is again quite different under different gravity and
surface tension effects. Surface tension has more in-
fluence on small scale surface structures because of
their relatively large curvature. The surface spectra
of a gravity dominated case and a surface tension
dominated case are plotted in Fig.7(a) and Fig.7(b),
respectively. For the former, the surface spectrum
has a slope of k−2.5. For the latter, high wavenumber
components are damped by the strong surface ten-
sion, and the surface spectrum has a much steeper
slope of k−5.5.

3.3 Surface wave and roughness

When the free surface is disturbed by the turbulence
from below, it can respond passively and locally in
the form of surface roughness. The energy received
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Figure 6: Instantaneous free surface elevation for the cases of: (a) (Fr2 = 0.8, We = 40) that is in the weak
turbulence regime, (b) (Fr2 = 128, We = 40) that is in the surface tension dominated regime, (c) (Fr2 = 4,
We = ∞) that is in the gravity dominated regime, and (d) (Fr2 = 32, We = ∞) that is in the very strong
turbulence regime.

can also propagate away in the form of surface waves.

The normalized frequency–wavenumber
spectrum of the surface elevation (Guo & Shen,
2010)

ΦN
η (|~k|, ω) = 1

(2π)3(ηrms)2

· ∫
T

∫
S

η(~x, t)η(~x + ~r, t + τ)e−i(~k·~r+ωτ)d~rdτ

(16)

is used to study the free surface waves and rough-
ness. Here T is sampling duration; S is the horizontal

plane; ω is the temporal frequency; |~k| is the module
of the horizontal wavenumber vector.

In Fig.8, ΦN
η (|~k|, ω) for the weak turbulence

case of (Fr2 = 0.8,We = 40) is plotted. Two ridges
are observed. One is represented by the solid line in
the figure, which corresponds to the dispersion rela-
tionship of capillary–gravity waves

ω =

√
k

Fr2
+

k3

We
. (17)

The other denotes the characteristic frequency of the
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Figure 7: Surface elevation spectra of (a) the gravity
dominated case of (Fr2 = 4, We = ∞) and (b) the
surface tension dominated case of (Fr2 = 32, We =
1).

surface elevation at each wavenumber (the dash-dot
line in Fig.8)

ω =

√
Φη(k)
Φηt

(k)
. (18)

Here Φη and Φηt are the one-dimensional spatial
spectra of the surface elevation and its time deriva-
tive, respectively. The lower ridge corresponds to
the turbulence induced roughness. It extends to high
wavenumbers, indicating that the turbulence rough-
ness is dominant at small spatial scales. Its time scale
is also much smaller than the wave period.

If the linearized free-surface kinematic
boundary condition (KBC) ηt = w is used, Eq.19

Figure 8: Normalized frequency–wavenumber spec-
trum of the surface elevation for the weak turbulence
case of (Fr2 = 0.8,We = 40).

becomes the one used by Borue et al. (1995)

ω =

√
Φη(k)
Φw(k)

. (19)

It is plotted as the dashed line in Fig.8. It deviates
from the ridge, suggesting that the nonlinearity plays
an important role in the dynamics of surface rough-
ness.

3.4 Intermittency

For very violent free surfaces with surface breaking
such as the case of (Fr2 = 32,We = ∞), using sur-
face elevation to describe the free surface is no longer
appropriate because it is multiple-valued. The flow
near the surface is often an air–water mixture. The
water phase is the focus of our study here. We define
the phase indicator as

I =
{

1 water,
0 air. (20)

After averaging, the phase indicator becomes the in-
termittency factor

γ(z) =< I(x, y, z, t) > . (21)

It is also the averaged volume fraction of water, which
is an important quantity in the modeling of multi-
phase turbulent flows.
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In Fig.9(a), we plot the intermittency factor
with respect to the water depth for cases with dif-
ferent Froude and Weber numbers. Among different
cases, the intermittency factors have different lengths
of extension but a similar shape. It is found that their
shape can be fitted by the complementary error func-
tion erfc(z).
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Figure 9: (a) Intermittency factors of the cases with
violent free surfaces: · · · · · · , (Fr2 = 32,We =
∞); – · · – · · – , (Fr2 = 32,We = 500); —— ,
(Fr2 = 32,We = 40); – · – · – , (Fr2 = 8,We = ∞);
(b) intermittency factors with z normalized by the
equivalent thickness ησ.
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Figure 10: (a) Histogram of the surface elevation of
the mild surface case of (Fr2 = 32, We = 1) and the
fitted Gaussian function. (b) Relationship between
intermittency factors and the surface elevation prob-
ability density function.

We define the intermittency layer thickness
based on an analogy to the ηrms of mild surface
cases. Here ηrms denotes the root-mean-square of
the surface elevation. We plot the histogram of
the surface elevation for the mild surface case of
(Fr2 = 32, We = 1) in Fig.10(a). It fits the Gaussian
function well. Therefore, we express the probability
density function of η as

P (η = z) =
1√

2πη2
rms

e−z2/2η2
rms . (22)

8



The intermittency factor is calculated as

γ(z) = 1− ∫ z

−∞ P (z′)dz′

= 1− ∫ 0

−∞ P (z′)dz′ − ∫ z

0
P (z′)dz′

= 0.5− 0.5erf(z/
√

2ηrms)
= 0.5erfc(z/

√
2ηrms).

(23)

We have γ(z = ηrms) ≈ 0.159 and γ(z = −ηrms) ≈
0.841. These values are case independent. We have

ηrms = (z|γ=0.159 − z|γ=0.841)/2. (24)

Analogically, we define the intermittency layer thick-
ness for cases with violent surfaces as

ησ = (z|γ=0.159 − z|γ=0.841)/2. (25)

After z is normalized by ησ, lines plotted in Fig.9(a)
almost become a single line (Fig.9(b)).

The intermittency layer thickness for cases
with different Froude numbers but the same Weber
number We = ∞ is plotted in Fig.11(a). A straight
line through the origin fits the data. The linear fitting
can be explained by the balance between the turbu-
lent kinetic energy (TKE) and the gravity potential
energy (surface tension energy is zero since We = ∞),
which can be described as

1
2
q2ησ ∼ η2

σ

2Fr2
. (26)

As a result, ησ/(2Fr2) is comparable to q2/2, which
is about the same for all cases.

The intermittency layer thickness is also
plotted in Fig.11(b) with respect to 1/We for cases
with the same Froude number Fr2 = 32. The larger
the Weber number, the thicker the intermittency
layer. But a linear relationship between the thick-
ness and the Weber number does not exist, because
the gravity effect still exists in these cases. In other
words, the energy balance is among TKE, gravity po-
tential energy, and surface tension energy. The ratio
between the gravity potential energy and the surface
tension energy is not a constant, and the surface el-
evation is also affected by the surface curvature 1/κ
through the surface tension energy. Therefore, sim-
ple relationship between ησ and 1/We does not exist
in Fig.11(b).

3.5 Turbulence statistics

3.5.1 Horizontal velocity fluctuation u′

In Fig.12, the vertical profiles of the horizontal ve-
locity fluctuations u′ for different cases are plotted.
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Figure 11: Intermittency layer thickness for cases
with: (a) the same Weber number We = ∞ but dif-
ferent Froude numbers; (b) the same Froude number
Fr2 = 32 but different Weber numbers.

The velocity fluctuations are normalized by the cor-
responding value at the water depth z = −0.5.

In Fig.12(a), the profiles of u′ for cases with
the same Weber number We = ∞ but different
Froude numbers are plotted. The u′ is smaller for
cases with larger Froude numbers. For the case of
Fr2 = 1, u′ increases significantly when approach-
ing the mean water level. In Fig.12(b), u′ for cases
with the same Froude number Fr2 = 32 but differ-
ent Weber numbers is plotted. At the surface, u′ is
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Figure 12: Horizontal velocity fluctuations of cases
with (a) the same Weber number We = ∞ but dif-
ferent Froude numbers: · · · · · · Fr2 = 32; – – –
Fr2 = 4; – · · – · · – Fr2 = 1, (b) the same Froude
number Fr = 32 but different Weber numbers: · · · ·
· · We = ∞; – · – · – We = 40; —— We = 1.

smaller for cases with larger Weber numbers. Similar
to the case of (Fr2 = 1, We = ∞), u′ for the case of
(Fr2 = 32, We = 1) increases towards the free sur-
face. For cases where the surface elevation is small,
the strong blockage effect turns the vertical motion
into horizontal directions. The smaller the Weber
number and Froude number, the larger the blockage
effect. Therefore, the flow in region 0 (weak turbu-

lence) has the largest blockage effect and the flow in
region 2 has the weakest blockage effect.

3.5.2 Vertical velocity fluctuation w′

The vertical velocity fluctuation w′ as a function of
water depth is plotted in Fig.13. In general, w′ shows
the opposite trend as u′ does when the Froude and
Weber numbers change. This is because the vertical
motion is blocked by the free surface and its energy
is transferred to the horizontal motion when the sur-
face is approached. It is also interesting that for the
case of (Fr2 = 32,We = ∞), the vertical velocity
fluctuation even increases slightly as the water sur-
face is approached from below, because the blockage
effect is countered by the turbulence generation due
to strong surface breaking (Fig.6(d)).

3.5.3 Phase averaged Reynolds stress

The phase averaged turbulent normal Reynolds stress
< u′u′I > and < w′w′I > are plotted in Figs.14 and
15, respectively. The phase averaged Reynolds stress
is determined by both the turbulence intensity and
the intermittency. Above the mean water level, the
intermittency factor is small. The phase averaged
Reynolds stress is mainly determined by the intermit-
tency factor, and they thus have the similar shape.
At lower heights, the fluid is mainly of water phase,
and as expected, the < u′u′I > and < w′w′I > have
the similar behavior as the turbulence velocity fluc-
tuations discussed earlier.

3.6 Flow structures

To further understand the turbulence statistics, we
next investigate flow structures. It is found that
events such as splat and surface breaking play an im-
portant role.

3.6.1 Splat and antisplat

When an fluid element moves towards a surface, the
surface blockage effect turns the motion from the sur-
face normal direction to the outward horizontal ones
that are radially along the surface, a process called
splat. When the radial flows from different splats en-
counter each other, the flow may be forced to return
to the bulk flow, a process called antisplat. For the
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Figure 13: Vertical velocity fluctuations of cases with
(a) the same Weber number We = ∞ but different
Froude numbers, (b) the same Froude number Fr2 =
32 but different Weber number. (See Fig.12 for line
legend.)

free-surface problems, the surface blockage is caused
by the gravity and surface tension effects.

In Fig.16(a), a horizontal slice near the free
surface for the case of (Fr2 = 32, We = 1) is plotted
with horizontal velocity vectors and vertical velocity
contours. Three splats can be seen in the region with
large positive vertical velocity and radial horizontal
velocity vectors. Antisplats are located at the edge
of the splat with negative vertical velocity. The anti-
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Figure 14: Phase weighted horizontal turbulent nor-
mal stress < u′u′I > of cases with (a) the same We-
ber number We = ∞ but different Froude numbers;
(b) the same Froude number Fr2 = 32 but different
Weber numbers. (See Fig.12 for line legend.)

splat regions are long and thin.

A vertical cut through a splat is plotted in
Fig.16(b), the dynamic pressure contours show a high
pressure region where the flow hits the surface. On
the sides of this splat, two counter rotating vortices
are formed because of the radial flow motion.

The vortex structures presented in Fig.16(c)
by the iso-surface of the second eigenvalue λ2 of the
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Figure 15: Phase weighted vertical turbulent normal
stress < w′w′I > of cases with (a) the same Weber
number We = ∞ but different Froude numbers; (b)
the same Froude number Fr2 = 32 but different We-
ber numbers. (See Fig.12 for line legend.)

velocity gradient tensor show vortex tubes parallel to
the free surface. There are also airside vortex struc-
tures generated because of the radial motion on the
free surface.

For the strong turbulence cases, the surface
is so violent that splat can be found directly from the
surface geometry. In Fig.17(a), we plot an instanta-
neous free surface and velocity vectors for the case of
(Fr2 = 32, We = ∞). In this figure, a large dome-

(a)

(b)

(c)

Figure 16: Instantaneous flow structures of the case
of (Fr2 = 32,We = 1): (a) horizontal slice close to
the interface; (b) vertical slice through a splat; (c)
free surface and vortex structures.

like surface geometry is located at the center of the
surface, which is the result of a large splat there. We
also plot the vertical velocity contours on a vertical
cut through the dome-like geometry. Strong upward
motion exists in the dome (Fig.17b), which eventually
breaks the dome and brings the fluid to a significant
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height (plotted in Fig.6d).

Splat also plays an important role in turbu-
lence stress and energy transport. In Fig.17(c) and
Fig.17(d), the transport of horizontal and vertical
normal stress on the vertical cut through the splat
are plotted. In the dome area, there is strong positive
vertical transport, meaning that velocity fluctuations
associated with the splat transports kinetic energy
toward the surface.

3.6.2 Breaking surface

Strong splats bring water blobs to a significant height
and generate surface breaking. When a breaking oc-
curs, the surface sheet overturns, reenters the water,
splashes, and entrains a large amount of air. For
very strong turbulence cases (large Froude number
and Weber number), surface breaking is a common
phenomenon. In Fig.18, a surface breaking process is
presented.

When the water sheet impinges on the wa-
ter surface below, there exists strong shear in the
contacting region. The shear causes high dissipa-
tion rate of the kinetic energy. In Fig.19(a), the
distribution of energy dissipation on a vertical cut
is presented. Large dissipation in the contacting re-
gion is clearly shown. Surface breaking also enhances
Reynolds stress transport. In Fig.19(b), the horizon-
tal transport of the horizontal normal stress is plot-
ted. When the water sheet reenters, the strong shear
brings a large amount of horizontal normal stress into
the water.

3.7 Decomposition of wave and turbu-
lence motions

We apply Helmholtz decomposition to the flow field
as

~u = ~uwave + ~uturb. (27)

Here ~uwave is the irrotational flow field represent-
ing the wave motion, and ~uturb is the remaining
solenoidal flow field representing the turbulence mo-
tion. In Fig.20, the decomposed flow field for the
case of (Fr2 = 0.8, We = 40) is plotted. Wave mo-
tion mainly exists close to the free surface. It is small
in magnitude compared with the turbulence motion
because the wave amplitude is relatively small in this
case.

As an example of the effect of wave motion
on turbulence, the production of Reynolds stress from

(a)

(b)

(c)

(d)

Figure 17: Instantaneous flow structure for the case
of (Fr2 = 32,We = ∞): (a) free surface and velocity
vectors; and on a vertical cross-section, distributions
of (b) vertical velocity; (c) transport of horizontal tur-
bulent normal stress by the vertical turbulent veloc-
ity; (d) transport of vertical turbulent normal stress
by the vertical turbulent velocity.
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(a)

(b)

(c)

Figure 18: A surface breaking process in the case
of (Fr2 = 16,We = ∞). (a) A water sheet is
brought up and begins to overturn. (b) The water
sheet plunges downward to the free surface. (c) The
water sheet reenters and then splashes up. Surface
elevation contours and the velocity vectors of water
are plotted. A vertical cut is extracted for analysis
in Fig.19.

(a)

(b)

Figure 19: Energy dissipation and turbulent
Reynolds stress transport associated with surface
breaking: (a) viscous dissipation rate; (b) horizontal
transport of the horizontal turbulent normal stress.

the wave motion is plotted in Fig.21. The production
exists mainly in the viscous layer, where the dynamic
free surface boundary condition is felt (Shen et al.,
1999). The influence of wave motion on the horizontal
stress is more significant than that on the vertical
stress.

4 CONCLUSIONS

In this study, we perform a systematic study on
the canonical problem of homogeneous turbulence
interacting with a free surface. With the recently
developed simulation capability that combines the
strengths of several free-surface flow simulation tools,
we are able to obtain an accurate description of the
free surface and the turbulence flow field. Such infor-
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(a)

(b)

Figure 20: Helmholtz decomposition of the vertical
velocity for the case of (Fr2 = 0.8, We = 40): (a)
wwave, the vertical velocity component of the irrota-
tional part of flow field; (b) wturb, the vertical velocity
component of the solenoidal part of the flow field.

mation is important for the modeling of free-surface
turbulence.

Different flow regimes are demonstrated by
the instantaneous surface geometries of representa-
tive cases. The surface elevation spectrum also
demonstrates large difference among flows under dif-
ferent gravity and surface tension effects. We identify

-0.1 0 0.1 0.2-1
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-0.6

-0.4

-0.2

0

z
l
_

Figure 21: Turbulence production by the wave mo-
tion (normalized by q3/l): —— , the total turbulence
production from the wave; – – – , the horizontal tur-
bulent stress production from the wave; – · – · – , the
vertical turbulent stress production from the wave.

surface waves and turbulence induced surface rough-
ness in the normalized frequency–wavenumber spec-
trum. The turbulence roughness is dominant at small
spatial scales. The intermittency factors for violent
surface cases are calculated. An equivalent intermit-
tency layer thickness is defined based on the inter-
mittency factors, and is discussed for different Froude
and Weber numbers.

We also investigate the influence of the grav-
ity and surface tension effects on the turbulence
statistics. The blockage effect of the free surface
turns the vertical motion into horizontal motion. It
is strongly dependent on the Froude number and the
Weber number. The smaller the Froude number and
the Weber number are, the stronger the blockage ef-
fect is. The phase averaged Reynolds stress is dis-
cussed and it is determined by both the intermittency
factor and the turbulent velocity fluctuation magni-
tude.

The two most important flow structures in
SFST, namely splat and surface breaking, are also
discussed. Splat is the major mechanism that turns
vertical motion to horizontal motion. Strong splats
generate surface breaking, and surface breaking en-
hances dissipation and turbulence transport signifi-
cantly. Finally, a scheme for the identification of wave
and turbulence motions from their complex coupled
flow fields is presented. It is found that the turbu-
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lence production by the wave motion exists mainly in
the viscous layer.
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