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ABSTRACT 
 
We develop a coupled wave-wind simulation 
capability for naval applications.  The objective is to 
provide more comprehensive environmental input for 
ship motions and loads.  Of particular interest is the 
effect of the presence of realistic ocean waves on the 
wind field and hence wind forcing, and, to a lesser 
extent, short-range effects of the wind field on the 
waves.  The combined wind-wave problem is here 
considered in a fully dynamically coupled context for 
the first time.  For the dynamic evolution of the 
wavefield, a high-order spectral (HOS) method is 
employed that captures all the essential nonlinear 
processes with the wave phase resolved.  Turbulent 
wind motions are computed by large-eddy simulation 
(LES) with the precise sea surface geometry and 
velocity directly provided by the wave simulation.  The 
full dynamical coupling of the two parts of the problem 
is achieved by feeding the high-resolution wind 
pressure result from LES to HOS wave simulation as 
wind input to obtain wind-wave growth, which then 
serves as the dynamically evolving boundary condition 
for the wind LES. 
 Study of winds over JONSWAP wavefields and 
plane progressive waves shows strong coupling 
between the wave and the wind, of which the two-way 
interaction must be taken into account in considering 
wind loads and sea loads for ship motions.  Through a 
series of systematic simulations and mechanistic 
studies, we are able to identify key coherent structures 
in the wind-wave field, which is found to play an 
important role in the momentum transport and have 
immediate implications for wind load on 
superstructures of ships.  Together with multiscale 
modeling and data assimilation, this work paves the 
way for a prediction tool that is capable of providing 
sufficiently large scale and realistic wind and wave 
field input for ship motion design and analysis. 
 
INTRODUCTION 
 
The accurate prediction of ocean wave and wind fields 
is of vital importance to naval applications.  Sea load 

and wind load directly affect motions and structural 
loads as well as maneuvering of surface ships.  For 
naval operations such as vehicle launch and recovery, 
aircraft landing and taking-off, and ship cargo transfer 
in severe weather, there is a critical need for the 
prediction of wind and wave fields with sufficient 
accuracy and resolution. 
 Existing prediction tools on marine atmospheric 
boundary layer and wavefield generally do not 
consider the dynamic coupling between wind and wave 
motions.  They often treat the problem in a phase-
averaged statistical framework without wave phase 
information, and they usually do not connect the large 
scales of remote sensing and meteorological modeling 
to small scales at which ship operates.  As a result, 
conventional computational tools provide only coarse-
grid averaged information on the wind and wave fields 
in the vicinity of the ship. 
 This state-of-art, however, has recently seen 
substantial opportunities for rapid advancements made 
possible by the latest research progress on nonlinear 
wavefield simulation and turbulence-wave interaction 
modeling and simulation.  Some notable developments 
include: (i) deterministic phase-resolved simulation of 
large-scale nonlinear wavefield evolution based on a 
high order spectral (HOS) method (Wu, Liu and Yue 
2005; Dommermuth and Yue 1985;); (ii) highly 
accurate turbulence simulation for flows over complex 
moving wavy boundaries (Sullivan, McWilliams and 
Moeng 2000; Shen et al. 2003); (iii) physics-based, 
advanced subgrid scale (SGS) models for LES and 
large wave simulation (LWS) of turbulence-wave 
interactions (Dimas and Fialkowski 2000; Shen and 
Yue 2001; Shen 2007); and (iv) multiscale 
downscaling and upscaling modeling  with advanced 
data statistics and assimilation techniques to extract 
high-resolution flow field at regions of interest from 
large-scale observation data  (Shen and Yue 2006; Liu, 
Shen and Yue 2008).  In the present work, we aim to 
integrate and extend the above advancements to 
develop a multiscale, truly-coupled wind-wave 
interaction simulation approach, with a focus on 
applications of wave and wind field prediction in the 
context of surface ship motion and load computation. 



 

 With the aforementioned applications in mind, we 
perform a systematic study aiming at obtaining a 
fundament understanding of the physics of wind-wave 
interaction for the development of improved prediction 
tools.  With the computer resources provided by the 
DoD HPC Modernization Program, a series of 
simulations have been performed that cover a wide 
range of wind and wave parameters including wind 
speed, wave spectrum, wave amplitude, wave age, 
wave nonlinearity, and wind drift.  The extensive 
dataset obtained from direct numerical simulation 
(DNS) and LES provides a basis for the study of wind-
wave interaction dynamics and for the development of 
physics-based turbulence and wave modeling. 
 This paper is organized as follows.  We first 
present mathematical formulation and numerical 
method for simulation of turbulence over water waves.  
Results on turbulence statistics in winds over various 
plane progressive waves are first discussed.  We then 
examine coherent vortical structures in great detail.  
The pressure field in the wind is further analyzed, 
which is essential to the wind load on ship 
superstructures.  Finally, we present LES-HOS coupled 
simulation for evolution of complex broadband 
wavefield interacting with the wind.  Conclusions of 
this research and some discussion on wind-wave 
prediction for ship motions are presented in the end. 
 
PROBLEM DEFINITION AND NUMERICAL 
METHOD 
 
We consider the three-dimensional turbulent Couette 
flow over a wavy boundary as shown in Figure 1.  In 
this canonical problem, the flow is driven by a constant 
shear stress, τ .  The Cartesian frame is fixed in space, 
with x, y, and z being the streamwise, spanwise, and 
vertical coordinates, respectively.  The water wave 
motion can be either obtained from HOS wave 
simulation, or prescribed by water wave theory.  For 
the dominant wave, a  is the wave amplitude, λ   the 
wavelength, 2 /k π λ=  the wavenumber, and c  the 
phase speed. 
 The turbulent wind motions are described by the 
incompressible Navier-Stokes equations 
 

  ( )i j 2i
i

j i

1 1
Re

u uu p u
t x xρ

∂∂ ∂
+ = − + ∇

∂ ∂ ∂
    (1) 

    i

i

0
∂

=
∂
u
x

         (2) 

 
Here iu (i=1, 2, 3) = ( u , v , w ) are Cartesian velocity 
components in x, y, and z directions, respectively. 

 By applying a low-pass filter ( )G x  to a 
variable ( )f x , we obtain the grid-scale quantity 
 
  ( ) ( ) ( ) ,f x G x x f x dx′ ′ ′≡ −∫       (3) 
 
and the subgrid-scale quantity 
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Figure 1: Sketch of a turbulent flow over water waves.  
The flow is driven by a shear stress τ .  The dominant 
wave has a wavelength λ  and amplitude a .  The wave 
propagates in the x-direction with a phase speed c .   
 
 
By applying the filter to equations (1) and (2), we 
obtain the LES governing equations for the resolved 
flow motions: 
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where the last term represents the subgrid-scale effects. 
 As shown in Figure 2, the irregular wave-following 
physical space (x, y, z, t) is transformed to a 
rectangular computational space ( , , ,ξ ψ ζ τ ) with the 
following algebraic mapping: 
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Here the height of the physical domain H  is 
decomposed into the average height H  and a wave 



 

induced variation ( )H , ,x y t′ .  This algebraic mapping, 
though seemly simple in its form, is found highly 
efficient in our simulations of turbulent flows over 
complex wavefields such as high-order Stokes waves 
and JONSWAP wavefield. 
 
 

 
Figure 2: Illustration of algebraic mapping.  The 
height of the physical domain H  is decomposed into 
the average height H  and a wave induced variation H′ .  
The irregular physical domain (x, y, z, t) is transformed 
to a rectangular computational domain ( , , ,ξ ψ ζ τ ) 
with an algebraic mapping. 
 
 
 Note that H′  is a function of x, y and t.  By 
applying chain rule to partial differentiations, we 
obtain the following transform of derivatives 
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By substituting the above operators into equations (1) 
and (2), we obtain fully nonlinear governing equations 
in the computational space. 
 For spatial discretization, we use a Fourier series 
based pseudo-spectral method in horizontal directions.  
In the vertical direction, we use a second-order finite-
difference scheme on a staggered grid (Harlow and 
Welch 1965; Shen et al. 2003).  We use an evenly 
distributed grid with 128 points in both streamwise and 
spanwise directions.  In the vertical direction, we use 
128 grid points that are clustered towards the bottom 
and top boundaries.  Hereinafter, in order to simplify 
the formulas, we will only discuss the discretization of 
the general Navier-Stokes equations.  The treatment of 
SGS terms is similar.  The Navier-Stokes equation (1) 
and (2) are advanced in time by a fractional-step 
method (Kim and Moin 1985): 
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Here the superscript represents the time step, and the 
hat represents the variables at the intermediate step of 
the fractional-step method.  The scalar φ  is related to 
pressure by the following equation 
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This scalar φ , called pseudo-pressure, is obtained by 
solving the Poisson equation 
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which is obtained by applying the divergence operator 
to equation (9) and then substituting (10) into it.  It is 
noted that after the algebraic mapping, the Laplacian 
operators in equations (8) and (12) become nonlinear.  
With the pseudo-spectral method in horizontal 
directions, these equations are solved iteratively. 
 



 

COUPLING OF WAVE COMPUTATION AND 
TURBULENCE SIMULATION 
 
For the nonlinear wavefield evolution, an efficacious 
high-order spectral (HOS) method makes it possible to 
capture all of the essential nonlinear wave interaction 
processes at a reasonable computational cost.  The 
HOS approach is a pseudo-spectral method based on 
the Zakharov formulation (Zakharov 1968) and mode-
coupling that was developed by Dommermuth and Yue 
(1987).  It accounts for nonlinear wave interactions up 
to an arbitrary order M  in wave steepness.  By taking 
advantage of fast Fourier transforms (FFT), this 
method requires a computational cost almost linearly 
proportional to M  and the number of wave modes N .  
More importantly, it achieves an exponential 
convergence rate of the solution with respect to both 
M  and N  for moderately steep wavefields. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Schematics of turbulence-wave coupling in 
the simulation. 
 
 
 Due to space limitation, equations of the HOS 
method are not given here.  Details of its 
implementation can be found in Dommermuth and Yue 
(1987).  Complete review of the HOS method is 
provided in Mei et al. (2005) in their Chapter 15.  The 
dynamic free-surface boundary condition for wave 
simulation is given as 
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where η  is the displacement of the wave surface from 
the mean water level,  ap  is the air pressure acting on 

the wave surface, Φ is the velocity potential, SΦ  is the 
potential on the free surface that is defined as 
 

  ( ) ( )( )S , , , , , , , .x y t x y x y t tηΦ = Φ    (14) 
 
The Dirichlet boundary condition from surface wave 
motions for the simulation of wind turbulence is 
obtained by 
 
 ( )( ) ( )( ), , , , , ., , , , , x y x y t tu x y x y t t ηη = ∇Φ       (15) 

 
 

 
Figure 4: Wind over a JONSWAP wavefield.  Surface 
wave profile is demonstrated by the computational 
mesh.  In the wind field, contours of streamwise 
velocity component are shown on the two vertical 
walls.  The air domain is lifted up for better 
visualization. 
 

 
Figure 5: Wind over a JONSWAP wavefield.  Surface 
wave profile is demonstrated by the computational 
mesh.  In the wind field, pressure contours are shown 
on the two vertical walls.  The air domain is lifted up 
for better visualization. 
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Figure 6:  Snapshot of instantaneous coherent vortices 
in the wind over a JONSWAP wavefield. 
 
 
 With the surface boundary conditions (13) and (15), 
the wind-wave coupling system can be solved 
iteratively during each time step.  Such an iteration 
approach, however, is computationally expensive, 
especially for the current simulation of wind turbulence 
with complex wavy interface that already involves 
iterative solver for momentum equations and pressure 
Poisson equation.  Instead, as shown in Figure 3, an 
alternative fractional-step scheme is used in the present 
study, and the procedure is described as follows: 
(1) At time step n-1: both turbulence field and 

wavefield have been solved. 
(2) At time step n: 

(a) By using pressure of air turbulence n-1
ap  at 

time step n-1 in boundary condition (13), 
HOS simulation is advanced to time step n. 

(b) Surface displacement and velocities of the 
wave (equation (15)) at time step n are given 
as Dirichlet boundary conditions to airside 
motions, and the turbulence simulation is 
advanced to time step n. 

(3) Proceed to time step n+1… 
 This alternating advancing scheme is in fact a 
special case of the general iterative scheme in the limit 
of only one iteration per timestep.  As pointed out by 
Lombardi et al. (1996), with the small time step value 
that is limited by the Courant condition in the 
simulation of turbulence, accuracy and numerical 
stability in the iteration is not a concern.  Our 
convergence test shows that a reduction in the timestep 
by a factor of 2 has negligible effect on both the 
instantaneous and statistical features of the turbulence. 
 Figures 4 to 6 show typical snapshots of the 
instantaneous turbulent wind field over the wavefield 
simulated by HOS.  The irregular waves are obtained 
from an HOS simulation of a JONSWAP wavefield 
(Hasselmann et al. 1973).  Besides the wave surface 
geometry, Figures 4 and 5 show respectively 
instantaneous velocity and pressure in the wind field, 

while Figure 6 shows coherent vortices in the wind.  
Wave-coherent turbulence structures in the wind are 
clearly seen.  Organized quasi-streamwise and 
horseshoe shaped vortices are also evident.  Detailed 
discussion on the flow structures is given in the 
following sections. 
 
MECHANISTIC STUDY OF TURBULENCE 
STATISTICS FOR WIND OVER PLANE 
PROGRESSIVE WAVES 
 
We first perform a mechanistic study on the dynamics 
of wind-wave interaction by a series of simulations 
with a wide range of water wave conditions.  This 
systematic approach allows us to investigate the 
influence on wind turbulence by different wave 
motions including wind speed, wave steepness and 
nonlinearity, surface drift etc.  We also investigate 
effect of wave age, which is defined as the ratio 
between the phase speed of the wave and the friction 
velocity of the wind turbulence.  Some parameters 
investigated in our simulations are listed in Table 1.  
Due to space limitation, only representative cases are 
discussed in this paper.  Following Belcher and Hunt 
(1998), we use the wave age c/u*=2 to represent young 
(slow) waves, c/u*=14 for intermediate waves, and 
c/u*=25 for mature (fast) waves. 
 For wind turbulence statistics, because of the 
boundary-fitted grid system we used in the present 
study, we define the phase average of a function 
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where the indices i, j, k, n are for discrete grid points in 
x, y, z, and t respectively, and Ny, Nt are the total 
numbers of sample points in y and t, respectively.  
Fluctuations are defined as 'f f f≡ − . 
 
 
Table 1: Parameters of wavy boundaries used for 
wind-wave simulations.  Wave steepness is defined as 
product of wavenumber k and wave amplitude a.  
Wave age is defined as the ratio between the wave 
phase speed c and the wind turbulence friction velocity 
u*.  Stationary wall cases are used for comparison. 
 

Wave Steepness (ka) 0.1 0.25 
Wave Age (c/u*) 0 2 14 25 0 2 14 25
Stationary Wall  *        *       

Water Wave  *  *  *   *  *  *

 



 

 
Figure 7:  Phase-averaged streamline patterns over 
plane progressive waves with steepness ka=0.25 and 
various wave ages: (a) c/u*=2; (b) c/u*=14; (c) 
c/u*=25.  Velocity used for calculating streamlines is 
in the wave-following frame, i.e. ( ,u c w− ) is used 
in the plots.  The blue curves represent wave surface.  
The red dash-dot-dot lines represent the height of 
critical layer where 0u c =− . 
 

 
Figure 8: Contour of Reynolds stress ' 'u w−  over 
plane progressive waves with steepness ka=0.25 and 
wave ages: (a) c/u*=2; (b) c/u*=14; (c) c/u*=25. The 
dash-dot-dot lines represent the location of the critical 
layer. 
 
 
 Figure 7 shows the phase-averaged streamline 
patterns for various wave ages.  The height of the 
critical layer (Miles 1957), where the mean velocity of 
turbulence matches the phase speed of the wave, is also 

plotted as dash-dot-dot lines.  In the frame traveling 
with the wave, the critical layer is surrounded by 
closed streamlines, known as the famous “cat’s-eyes” 
(Lighthill 1962).  As we can see, for the case of c/u*=2, 
the critical layer lies very close to the wave surface, 
and it touches the surface near the crest; for the 
c/u*=14 case, the critical layer lies well above the 
wave surface and the mean flow reverses below the 
critical layer; for the case c/u*=25, the critical layer is 
located far away from the wave surface, resulting in 
negligible dynamical effect on the wave. 
 In a turbulence boundary layer, the distribution of 
Reynolds stress ' 'u w− is important to turbulence 
production and transport.  In the problem of turbulence 
over water waves, distribution of Reynolds stress is 
found quite different from flat wall cases.  Figure 8 
shows contours of the Reynolds stress for different 
wave ages.  It is apparent that the Reynolds stress 
distribution is strongly dependent on wave phase and 
this dependence changes drastically with the wave age.  
For the case of c/u*=2, the maximum of Reynolds 
stress lies above the wave trough.  Besides this 
apparent peak region, there exists a second high 
Reynolds stress region that extends from the first to the 
upward downstream direction over the wave crest.  For 
cases of c/u*=14 and 25, the positive peak moves to 
the leeside of the crest, while there is a negative peak 
on the windward side of the crest.  Here we use the 
term windward to denote upstream (in terms of the 
outer flow) of the wave crest in the frame fixed in 
space. 
 As pointed out by Hudson (1993), for turbulence 
over a stationary wavy wall, there exists a thin region 
with small negative Reynolds stress on the windward 
side of the crest.  Hudson (1993) attributed this 
negative Reynolds stress to be an artifact of the 
Cartesian coordinate system used in the simulation and 
analysis.  However, this argument is inadequate to 
explain the existence of the negative Reynolds stresses 
region with large magnitude and large size as shown in 
Figures 8 (b) and (c).  When the water wave is moving 
fast, the magnitude of the vertical velocity in the air 
induced by the wave motion is comparable to the mean 
streamwise velocity of the wind.  Similar to the 
negative correlation between 'u  and 'w  in a boundary 
layer flow with ( )U z , the wave induced vertical 
velocity here creates a shear flow ( )W x  in the vertical 
direction.  The combined effect of ( )U z  and ( )W x  
results in a positive correlation of 'u  and 'w  on the 
windward side, i.e. a negative Reynolds stress. 
 A useful tool in the study of Reynolds stress is 
quadrant analysis.  Contribution to the Reynolds stress 
is divided into four quadrants: Q1 ( ' 0, ' 0u w> > ), Q2 
( ' 0, ' 0u w< > ), Q3 ( ' 0, ' 0u w< < ), and Q4 



 

( ' 0, ' 0u w> < ).  Previous research shows that Q2 and 
Q4 motions dominate in flat wall boundary layers, 
which are know as ejection and sweep events, 
respectively (Kim et al. 1987).  However, as shown 
earlier, for waves with relatively large phase speed, Q2 
and Q4 do not necessarily indicate ejections and 
sweeps.  The classification of ejection and sweep 
depends on local profiles of u and w. 
 
 

 
Figure 9: Distribution of ( )', 'u w  for the case of (ka, 
c/u*) = (0.25, 2).  Different streamwise locations are 
chosen: (a) above windward side; (b) above crest; (c) 
above leeward side; and (d) above trough. 
 
 

 
Figure 10: Same as in Figure 9 but for the case of (ka, 
c/u*) = (0.25, 25). 

 
Figure 11: For the case of (ka, c/u*) = (0.25, 2), 
contributions to Reynolds stress from quadrants: (a) 
Q1: ' 0, ' 0u w> > ; (b) Q2: ' 0, ' 0u w< > ; (c) Q3: 

' 0, ' 0u w< < ; and (d) Q2: ' 0, ' 0u w> < . 
 

 
Figure 12: Same as in Figure 11 but for the case of (ka, 
c/u*) = (0.25, 14). 
 

 
Figure 13: Same as in Figure 11 but for the case of (ka, 
c/u*) = (0.25, 25). 



 

 Figures 9 and 10 show the quadrants of ( )', 'u w  at 
different wave phases for c/u*=2 and 25 at a fixed 
height above wave surface for different streamwise 
locations.  The c/u*=14 case is similar to c/u*=25 and 
the results are not shown here.  The heights chosen for 
sampling in both cases are the ons where the peak 
values of the Reynolds stress are located.  For the case 
of c/u*=2, the quadrants are dominated by Q2 and Q4, 
similar to the flat wall case.  However, for c/u*=25, we 
find that: (i) above windward side of crest, Q1 and Q3 
dominate; (ii) above leeward side of crest, Q2 and Q4 
dominate; (iii) above crest and trough, all quadrants 
have comparable contributions.  This result indicates 
that when wave motion becomes strong, the shear 
profile of the wave induced vertical velocity becomes 
as important as the mean streamwise flow. 
 We next examine contributions from different 
quadrants to the Reynolds stress.  As shown in Figure 
11, for the case of c/u*=2, the Q2 and Q4 events are 
responsible for most of the Reynolds stress.  In Figure 
11(b), the peak value of Reynolds stress due to Q2 
(ejection in this case) starts above the wave trough, 
extends to the downstream direction, lifts up above the 
wave crest, and then becomes weak further 
downstream.  In Figure 11(d), the peak value due to Q4 
(sweep in this case) is located right above the wave 
trough.  Distributions of the decomposed Reynolds 
stress are similar for the cases of c/u*=14 and 25, as 
can be seen in Figures 12 and 13.  The Q1 and Q3 
events produce negative Reynolds stress on the 
windward side of the wave crest, while Q2 and Q4 
contribute positive Reynolds stress on the windward 
side of the wave crest. 
 As found by previous studies on flat wall boundary 
layers, the ejection and sweep events of turbulence are 
strongly related to near-wall coherent structures, which 
we discuss in the next section for turbulence over 
water waves. 
 
COHERENT VORTEX STRUCTURES NEAR 
WAVE SURFACE 
 
We perform an extensive study on coherent turbulence 
structures in the wind field over waves, which play an 
important role in wind force on ship superstructures.  
Previous studies of turbulence over a flat wall have 
indicated the existence and dynamic importance of 
coherent vortex structures both experimentally (e.g., 
Adrian et al. 2000) and numerically (e.g., Kim 1983, 
Moin and Kim 1985, Kim and Moin 1986, Heist et al. 
2000).  Based on experimental and numerical 
observations, many conceptual models for near-wall 
coherent turbulent structures have been proposed, 
among which the quasi-streamwise vortex model (e.g., 
Jeong et al. 1997) and the horseshoe vortex model (e.g., 

Zhou et al. 1999) are the most widely studied.  A 
comprehensive review of coherent vortical structures 
in turbulence study can be found in Robinson (1991).  
For turbulence over wavy surfaces, however, there is a 
lack of study on coherent vortex structures.  The few 
existing studies are all for stationary wavy walls (e.g. 
De Angelis et al. 1997, Calhoun and Street 2001, and 
Tseng and Ferziger 2004).  In this study, we employ 
various identification schemes to visualize 
instantaneous coherent vortex structures near water 
wave surfaces.  These vortices are then studied 
statistically by means of conditional averaging. 
 For the study of coherent vortical structures in 
turbulence, many identification techniques have been 
developed for the visualization of vortices. Among 
those, the vortex line method (Moin and Kim 1985), Q 
method (Hunt et al. 1988), ∆  method (Chong et al. 
1990), and 2λ  method (Jeong and Hussain 1995) are 
the most popular ones.  Recently, a new method based 
on the swirling strength ( ciλ ) criterion has been 
developed by Zhou et al. (1999), which was later 
modified by Chakraborty et al. (2005) by adding 
another criterion /cr ciλ λ (hereinafter referred to as 
the ciλ  method).  We have employed the above 
approaches and found both the 2λ  and ciλ  methods 
provide satisfying results in capturing the general 
topologies of the vortices near wave surfaces, with 
slight difference in background noise.  Without losing 
generalization, we use the 2λ  method for vortex 
identification in this paper. 
 In the 2λ  method, following Jeong and Hussain 
(1995), we calculate the eigenvalue of the tensor 

2 2+S Ω , where S  and Ω  are respectively the 
symmetric and antisymmetric parts of the velocity 
gradient tensor ∇u .  Let 2λ  be the second largest 
eigenvalue of 2 2+S Ω , the region where 2 0λ <  defines 
the interior of a vortex core. 
 In Figure 14 we plot the instantaneous coherent 
vortical structures in the near-surface region for 
young/slow (c/u*=2) and mature/fast (c/u*=25) water 
waves.  It is apparent that the dominant vortex 
structures near the wave surface are stretched in the 
streamwise direction for both cases.  By comparing 
Figures 14(a) and (b), it is interesting to see that 
features of the coherent vortices strongly depend on the 
wave age c/u*.  In the mature wave case, there are 
vortex sheets lying right above the wave crests and 
troughs.  Detailed investigation (not shown here) 
indicates that these vortex sheets have vorticity vectors 
pointing in the spanwise direction.  Above the crest, 
the spanwise vorticity has 0yω < , while above the 



 

trough it has 0yω > .  This sign distribution suggests 
that the spanwise vortex sheet is generated by the fast 
moving wave. 
 
 

 

 
Figure 14: Snapshots of near-wall coherent vortical 
structures in instantaneous turbulence field over water 
waves with wave ages: (a) c/u*=2; and (b) c/u*=25. 
 
 
 Figure 15 shows a top view of the instantaneous 
flow field as shown in Figure 14(a).  The background 
shade and the blue curve at the bottom of the figure 
denote the wave surface displacement.  Vortices with 
positive streamwise vorticity are colored by blue, while 
those with negative streamwise vorticity are yellow.  
Several typical coherent vortex structures are marked 
with numbers 1 to 6.  Vortices number 1 and 3 are 
quasi-streamwise vortices with positive xω , while 
vortex number 2 is a quasi-streamwise vortex with 
negative xω .  As shown in the figure, these quasi-
streamwise vortex structures start from the windward 
side of a wave crest, and they extend over the wave 
crest.  Another type of vortex structures is the 
horseshoe vortex, e.g. vortices number 4 to 6 in Figure 
15.  It is a little surprising that these horseshoe vortices 
have their head upstream but legs downstream.  This is 
the opposite of the typical horseshoe vortices near a 
flat wall, of which the heads are downstream of the 
legs.  Also we found that the heads of these vortices 
are usually located above the wave trough.  Generally 
speaking, the quasi-streamwise structures are dominant 
near the surface.  The horseshoe vortices, together with 

some arch vortices and some small spanwise vortices, 
concentrate near the wave trough. 
 

 
Figure 15: Top view of instantaneous vortices shown 
in Figure 14(a).  Structures with blue color are vortices 
with positive streamwise vorticity; those with yellow 
are vortices with negative streamwise vorticity.  
Typical coherent vortex structures are marked with 
numbers from 1 to 6. 
 
 

In order to study the dependence of vortex 
distribution on wave ages, we calculate the 
conditionally phase-averaged value of 2λ .  Since only 
the region of 2 0λ <  is inside the vortex core, we 
define a detection function as 

 

  21          if ( , , , ) 0
( , , , ) ,

0         otherwise
x y z t

D x y z t
λ ≤⎧

= ⎨
⎩

     (17) 

 
and then we calculate the phase-averaged value of the 
product 2D λ⋅ .  To further decompose the contribution 
from quasi-streawise and spanwise vortices, we apply 
another conditional function 
 

  
2 21          if 

( , , , ) .
0         otherwise

x z yE x y z t
ω ω ω⎧ + >⎪= ⎨

⎪⎩
    (18) 

 
Finally, phase-averaging is performed for the 
quantity 2D E λ⋅ ⋅ , which is used as an effective 
indicator for the spatial frequency of quasi-streamwise 
vortex occurrence. 
 



 

 
Figure 16: Phase-averaged contours of 

2
D E λ⋅ ⋅  for 

turbulence over plane progressive waves with 
steepness ka=0.25 and wave ages of: (a) c/u*=2; (b) 
c/u*=14; and (c) c/u*=25. 
 

 
Figure 17: Phase-averaged contours of enstrophy 
component x xω ω′ ′  for cases c/u*=2, 14, and 25. 
 
 
 Figure 16 shows the phase-averaged contours of 

2D E λ⋅ ⋅  for the cases of c/u*=2, 14, and 25.  For the 
c/u*=2 case, the quasi-streamwise vortices have the 
maximum concentration on the windward side of the 
wave crest.  The vortices start from the trough, extend 
to the downstream direction, lift up above the crest, 
and then become weak above the leeside of the crest.  
This variation is very similar to the distribution of 
Reynolds stress due to Q2 event as shown in Figure 
11(b).  This similarity suggests that for the young wave 
case c/u*=2, ejection events on the windward side of 
the wave crest are induced by quasi-streamwise 
vortices.  

 For the cases of c/u*=14 and 25, the quasi-
streamwise vortices also concentrate on the windward 
side of the crest.  The c/u*=14 case has lower peak 
value than the c/u*=25 case, indicating that the quasi-
streamwise vortices in the intermediate waves occur 
less frequently than in mature waves. 
 
 

 
Figure 18: Same as in Figure 17 but for enstrophy 
component z zω ω′ ′ . 
 
 

Because the contours in Figure 16 do not tell the 
direction of the vortices in x-z plane, we further 
calculate the phase-average value of the enstrophy 
component i iωω′ ′ .  The results are shown in Figures 
17 and 18.  By comparing with Figure 16, we find that 
due to the slope of the wave surface, the quasi-
streamwise vortices are inclined to the vertical 
direction near the trough, while turning to the 
streamwise direction above the crest.    Comparing 
with Figure 14(b), we can see that the vortices riding 
above the wave crest tend to bend to follow the slope 
of the wave crest. 
 
EDUCED VORTEX STRUCTURES 
 
In this section, we use another conditional average 
approach to educe characteristic coherent structures in 
the wind field above water waves.  Compared with the 
flat wall case, turbulent flows over waves have several 
complex features including streamwise variation of the 
surface slope, wave orbital velocity, streamwise 
pressure gradient, and propagation of wave form.   
These additional characteristics introduce streamwise 
variations and topology changes to vortex structures.  
As such, our experience shows that it is often difficult 
to apply existing conditional average schemes such as 
the Reynolds-stress based variable-interval special-



 

averaging (VISA) method (Kim 1983) in the present 
wind-over-wave problem.   
 
 

 
Figure 19: Educed quasi-streamwise vortex with 
positive streamwise vorticity by means of conditional 
average: (a) side view; (b) top view.  The blue curve 
represents conditional-averaged wave surface. 
 

 
Figure 20: Same as in Figure 19 but for vortices with 
negative streamwise vorticity. 
 
 
 To overcome this difficulty, we develop a new 
conditional average scheme.  In our approach, the 
variable-interval function is based on the 2λ  value 
rather than the Reynolds stress.  After the local 
extrema of the variable-interval function are found, we 
further search the spatial points in the neighbourhood 
to obtain geometry characteristics of the vortex 
structure.  Finally, the vortices to be sampled for the 
conditional averaging are determined based on the 
vortex topology.  We find this new approach can 
faithfully capture vortex structures in question. 

Figures 19 and 20 show the educed quasi-
streamwise vortices with positive and negative 
streamwise vorticity, respectively, for the young wave 
case c/u*=2.  It is shown that quasi-streamwise vortices 
are located above the windward side of the wave crest, 
consistent with Figure 16(a).  By comparing Figure 
19(b) with Figure 20(b), we find that when extending 
to the downstream direction, the educed positive quasi-
streamwise vortex inclines slightly to the left, while the 
negative quasi-streamwise vortex inclines to the right. 

As pointed out by Kim and Moin (1986), when a 
Reynolds stress based VISA scheme is used, the 
conditionally averaged structures are smeared out 
relative to the instantaneous ones, and care should be 
taken when they are used to model instantaneous 
structures.  In the present study, we use the value of 2λ  
to extract vortical structures from the surrounding fluid, 
of which the topology is further checked.  Only those 
belong to the specific vortex type that we are looking 
for are taken as samples for averaging.  Therefore, the 
educed structures by our approach are more related to 
the instantaneous ones than those educed by the 
conventional VISA scheme. 
 
 

 
Figure 21: Same as in Figure 19 but for the case of 
c/u*=14. 
 
 
 The educed quasi-streamwise vortices for cases of 
c/u*=14 and 25 are shown in Figures 21 and 22, 
respectively.  Due to space limitation, we only present 
results for quasi-streamwise vortices with positive xω  
here.  The structures near the wave crest and trough are 
due to the spanwise vortex sheets generated by strong 
wave motion, as shown in Figure 16(b).  As pointed 
out earlier, these spanwise vortices are wave phase 
coherent (that is, 0yω <  above crest and 0yω >  above 
trough) and they are distributed along the spanwise 



 

direction.  Unlike other structures that occur 
stochastically, these spanwise vortical structures 
survive the conditional averaging procedure and they 
are evident in the educed field.   Similar to the case of 
c/u*=2, the positive quasi-streamwise vortices incline 
to left as they extend to the downstream direction.  
However, for the intermediate and mature waves, these 
vortices are located further downstream compared to 
the young wave case, again in consistence with the 
statistical results shown in Figure 16. 
 
 

 
Figure 22: Same as in Figure 19 but for the case 
c/u*=25. 
 

 
Figure 23: Educed arch vortex for the case of c/u*=2 
by means of conditional average: (a) side view; (b) top 
view.  The blue curve represents conditionally-
averaged wave surface. 
 

 As shown earlier, there also exist horseshoe 
vortices near the wave trough.  We also apply the 
conditional average method to educe this type of 
vortices.  Figure 23 shows that the educed horseshoe 
vortex is located slightly upstream of the wave trough.  
The arch shape head of the horseshoe vortex is clearly 
shown in the figure.  The beginnings of the two legs 
are indicated by the blue and yellow colors 
corresponding to positive and negative streamwise 
vorticity, respectively.  As shown in Figure 15, each 
individual horseshoe vortex may have quite different 
shapes including different angles and different 
distances between the two legs.  This spatial variation 
results in the smearing out of the two legs during the 
averaging procedure.  Therefore, instead of a complete 
horseshoe shaped vortex, we obtain an arch vortex as 
shown in Figure 23(b). 
 Recalling that in Figure 11(d), the Reynolds stress 
due to the Q4 (sweep) event has its peak above the 
wave trough.  Around the same location, there exist 
horseshoe vortices, arch vortices, and small spanwise 
vortices, (hereinafter, they are all named as arch family 
of vortices), as shown in Figures 15 and 23.  These 
vortices are all associated with downwelling motion 
(sweeps) of the fluid on the downstream side of their 
heads.  Therefore, this arch family of vortices may also 
play an important role in turbulence production and 
dissipation.  Now the question is: Is this arch family of 
vortices caused by the sweep event? Or are they 
actually generated by other mechanisms, such as mean 
shear induced instability, and do they in turn cause 
sweep motion?  The answer is not clear yet, and further 
investigation is needed. 
 
PRESSURE IN WIND FIELD 
 
Another important question is how the pressure varies 
in wind-wave interactions.  Such information is 
essential to the wind force on ship superstructures.  It 
also plays an important role in the study of effects of 
wind input on deterministic prediction of wave 
propagation.  For this purpose, we investigate pressure 
statistics in wind-wave interactions.  
 Figure 24 shows the phase-averaged wave-
correlated pressure contours of winds over plane 
progressive waves with wave ages c/u*=2 and 14.  It is 
found that, for the young wave case of c/u*=2, the 
pressure contours are tilted at a short distance above 
the wave.  For the intermediate wave with c/u*=14, the 
high pressure region does not extend vertically much 
comparing to the wave amplitude.  It is found that the 
young wave is substantially affected by the wind-
induced surface drift. With the presence of a wind-
generated surface drift, the low pressure region is 
shifted towards the trough, while the high pressure 



 

region is extended slightly in the downstream direction.  
Effect of surface drift on the pressure field for the 
intermediate wave is less obvious. 
 
 

 

 

 
Figure 24: Phase-averaged wave-correlated pressure 
contours for surface waves with wave ages c/u*=2 and 
14.   In the two lower figures, the wind-generated 
surface drift is considered. 
 
 

 
                             

 
Figure 25: Histograms of pressure distribution 
probability at different locations for wind over water 
wave.  Wave age is c/u*=2.  Here, the pressure is 
normalized by the root-mean-square of the surface 
pressure fluctuation. 
 
 

 From the above observation, it is clear that the 
pressure field distribution is a strong function of wave 
phase, which may play an important role in the wind 
load on ships when the ship length is comparable to the 
wavelength of the dominant wave. The pressure   may 
vary significantly in the vertical direction near the 
water surface, and its spatial variation is highly 
dependent on the wave age, signifying the importance 
of wind-wave dynamical interaction. 

While Figure 24 presents the averaged result of 
wind pressure, it is also important to consider the 
fluctuations of the wind pressure.  Such gust effect 
may be essential for the investigation of ship motions 
and wind loads.  For this purpose, we investigate the 
probability density distribution of the pressure.  It is 
found that young waves have wider pressure 
distributions, i.e. more variations, than mature waves 
(results not shown here due to space limitation).  To 
illustrate the spatial distribution of pressure 
fluctuations, we plot in Figure 25 histograms of 
pressure distribution at two different heights above the 
wave.  It is shown that at the leeside and at the trough, 
the pressure obtained at some distance above has more 
fluctuations than the wind input at the wave surface.  
Such effects may affect the structural dynamics of the 
ship in respond to wind load. 
 
EVOLUTION OF COMPLEX BROADBAND 
WAVEFIELD INTERACTING WITH WIND  
 
 

 
Figure 26: Time history of the root-mean-square of 
wave surface displacement. 
 
 
In order to study the effect of wind input on ocean 
wavefield evolution, we utilize our coupled wind-wave 
code to simulate broadband wind-wave field. For 
comparison, we perform two parallel computations 
with one-way and two-way coupling, respectively: (i) 
the wave surface motion is used as a boundary 
condition for the turbulence simulation, but the 



 

turbulence pressure is not applied to the wave 
simulation (in other words, ap  is set to be zero in the 
dynamic boundary condition for wave simulation); and 
(ii) exact coupling as described earlier.  We start the 
two simulations with identical initial conditions from a 
JONSWAP ocean wave spectrum (Hasselmann et al. 
1973).  Instantaneous flow fields are illustrated in 
Figure 4 to 6. 
 
 

 
 

Figure 27: Comparison of surface contours without 
(Figures (a) and (c)) and with (Figures (b) and (d)) 
wind input from air to wave.  Contours in (a) and (b) 
are for streamwise vorticity of air on the wave surface.  
Contours in (c) and (d) are air pressure acting on the 
wave surface. 
 
 

 Figure 26 shows the time history of the root-mean-
square of wave surface displacement from simulations 
(i) and (ii).  Apparently, when the two-way coupling 
between wind turbulence and waves is captured in the 
simulation, the wave obtains energy input from the 
wind by work of the air pressure, and the wave grows 
with time. 
 Figure 27 shows comparison of streamwise 
vorticity and air pressure at the wave surface between 
the two simulations.  It is found that one-way and two-
way coupling can have appreciable differences in the 
results, especially for the surface pressure distributions.  
We remark that the results in Figures 26 and 27 are for 
low wind conditions (the wind speed at 10 meters 
above sea level is 6.8m/s).  One can imagine that for 
high winds, one-way and two-way coupling 
simulations can lead to wavefields that are 
substantially different.  The one-way coupling 
simulation for wind turbulence over water waves, 
which employs prescribed wave boundary conditions, 
may not be able to make accurate predictions of wind-
wave evolution.  The two-way coupling simulation tool 
we develop in the present study, on the other hand, 
overcomes this shortcoming.  Due to the high 
efficiency of the HOS method, the two-way coupling 
increases the computational cost only slightly 
compared to the one-way coupling. 
 Figure 28 shows a comparison between 
instantaneous pressure and vortex structures in the 
wind turbulence over the JONSWAP wavefield 
obtained from the two-way coupling simulation.  Here 
the pressure structures are identified by the iso-surface 
of the negative pressure value p=-0.007, and the 
snapshot is taken at the same instantaneous time as in 
Figure 6.  By comparison with vortex structures, we 
find that the pressure structures have much larger 
vertical extension and they can be connected to the 
wave surface.  A close-up view for the sub-domain 
marked by the black frame in Figure 28(a) is shown in 
Figure 28(b)-(e).  It is apparent that there exists a 
strong correlation between the coherent vortex 
structures and the pressure structures. 
 As shown earlier, the water wave can have strong 
influence on the distribution of near-surface coherent 
vortices in the wind.  As a result, strong influence of 
the water wave on the air pressure is expected.  This is 
confirmed by the results in Figure 27.  Comparing to 
one-way coupling, the two-way coupling simulation 
has a quite different distribution of coherent vortices in 
the wind turbulence and hence a different wind 
pressure distribution.  Since the near-surface wind 
pressure plays an important role in the estimation of 
wind loads on ship as well as in the prediction of wave 
evolution under wind excitation, we remark that a two-
way coupling simulation is necessary. 



 

 
Figure 28: Correlation between the instantaneous 
pressure and vortex structures in wind turbulence over 
JONSWAP wavefield.  The same snapshot as Figure 6 
is chosen and the pressure structures identified by the 
iso-surface of p=-0.007 is shown in (a).  A subzone in 
figure (a) indicated by a black frame is extracted for 
detailed comparison: (b) and (c) are the side views of 
pressure and vortex structures, respectively; (d) and (e) 
are the top views of the pressure and vortex structures, 
respectively. 
 
 
CONCLUSIONS AND DISCUSSION 
 
In this study, we develop a novel numerical capability 
for wind and wave simulation for naval applications.  
The wavefield is computed with an efficacious high-
order spectral (HOS) method that directly captures key 
nonlinear wave interaction processes, with the phases 
of all the dynamically important wave components 
being resolved.  With wind turbulence simulation and 
kinematic and dynamic coupling at the sea surface, we 
are able to simulate ocean wave and wind evolution 
and their interaction in a direct, phase-resolved 
physical context for the first time. 

Equipped with the computational capability 
developed above, we perform a systematic study on the 
wind turbulence over broadband ocean wavefields and 
plane progressive waves with a wide range of 
environmental parameters.  In this paper, we discuss 

representative results on flow structures, statistics of 
momentum transport, coherent vortices, and wind 
pressure, which are found strongly dependent on the 
wavefield.  We also show that the wind may have 
significant effects on wave evolution.  Therefore, the 
dynamic coupling between the wind and the waves 
may be essential for many of the Navy’s applications, 
and the unique numerical tool developed in our work 
provides a powerful tool for the study of wind-wave 
interactions.    
 Computation of phase-resolved surface wavefield 
and marine atmospheric boundary layer may lead to 
better understanding and prediction of the ocean 
environment for naval ship operation and maneuvering. 
Together with data assimilation techniques and 
multiscale modeling, we aim to provide the Navy with 
a new powerful tool to predict nonlinear, large 
wavefield with finely-resolved temporal and spatial 
detail.  The new phase-resolved, deterministic tool is 
fundamentally different from existing phase-averaged, 
statistical wave modeling tools, with the potential of 
being able to make more accurate prediction because 
of its direct, physics-based approach. 

The coupled wind-wave simulation capability can 
also be used as a tool for naval ship design and 
operation when wind forcing on the superstructures is 
of concern.  To estimate wind loads, it is essential to 
understand the wind turbulence field including both the 
mean and the stochastic quantities (Simiu and Scanlan 
1996, Liu 1991).  Systematic simulation of winds over 
ocean waves under various sea conditions provides 
valuable database in the design and test circle.  
Together with ship hydrodynamics simulations, 
computation for surface ship operations under high 
wind and severe wave conditions is one of our long-
term goals of research. 
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