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Vortical structures in turbulence over progressive surface waves are studied using the data from
direct numerical simulation of a stress-driven turbulent Couette flow above a waving surface.
Instantaneous flow field and its evolution, vorticity statistics, and conditionally averaged flow field
with various sampling methods are examined. Unique vortical structures are identified, which are
found to be strongly dependent on the wave motion. For a slow wave (with a small value of wave
age ¢/u,=2; here ¢ is the phase speed of the wave and u, is the friction velocity), the vortical
structures are characterized by reversed horseshoe vortices and quasistreamwise vortices. The
former is concentrated above the wave trough and is associated with sweep events there; the latter
has high intensity over the windward face of the wave and is associated with ejection events.
Relative to the waveform, the coherent vortical structures propagate in the downstream direction.
Vortex turning and vortex stretching play an important role in the vortex transformation and
evolution processes. For an intermediate wave (c/u,.=14) and a fast wave (c¢/u,=25), the dominant
vortical structure is bent quasistreamwise vortices, which are predominantly horizontal but have a
distinctive downward bending in their upstream ends near the wave trough. The vortices are found
to propagate in the upstream direction with respect to the waveform. The above-wave coherent
vortices identified in this study are found to play an important role in the turbulent transport

process. © 2009 American Institute of Physics. [doi:10.1063/1.3275851]

I. INTRODUCTION

Turbulent flow over progressive surface wave is related
to many important fluid problems. Examples include wind-
wave generation and evolution, gas and heat transfer be-
tween the atmosphere and the oceans, and many industrial
processes involving gas-liquid interfacial phenomena. To
model and predict the flow properties in these applications,
there is a critical need for the study of turbulence structures
in the boundary layer over the wave, of which our current
understanding is quite limited due to the complexities asso-
ciated with the curved geometry of the wave surface and the
orbital motion of the wave.

The displacement of a wavy surface provides a periodi-
cally curved boundary to the turbulent flow above it and
generates alternating favorable and adverse pressure gradi-
ents in the flow. To investigate the effect of wavy surface
geometry on the turbulence field, many researchers studied
the problem of turbulence over a stationary wavy wall
theore‘tically,l numelrically,z_7 and experimentally.&9 These
studies showed that the alternating concave and convex of
the wavy surface make the flow structures strongly depen-
dent on the streamwise location relative to the waveform,
and that the flow statistics along the wavy surface is substan-
tially different from that of a flat wall boundary layer.

In addition to the geometrical effect of the wavy surface,
the surface motion of the wave introduces direct disturbance
to the velocity field of the turbulence. In the past several
decades, considerable amount of research has been con-
ducted on turbulent flows over progressive water surface
waves, including theoretical analyses,lo*12 numerical
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simulations, 16 and field and laboratory measurements.
It has been found that as the wave phase speed increases, the
turbulence structure differs significantly from that above a
stationary wavy wall. The distributions of many turbulence
quantities are found to be determined by the relative motion
of the surface wave and the turbulence, which is often mea-
sured by the wave age c/u., defined as the ratio between the
wave phase speed ¢ and the friction velocity u.. Therefore,
turbulence over the stationary wavy wall can only be re-
garded as an approximation of the slow (young) wave case.

Recently, we performed direct numerical simulation
(DNS) for a comprehensive study of turbulent flows over
various wavy surfaces including stationary wavy wall, verti-
cally waving wall, and Airy and Stokes waves with and with-
out surface drift.”' Wind over progressive water surface
wave is the focus of our study. In Ref. 21, we investigated
slow wave with c¢/u,=2, intermediate wave with c¢/u,.=14,
and fast wave with ¢/u,.=25. It is shown that the statistics of
turbulence intensity, pressure, Reynolds stress, and budget of
turbulent kinetic energy have large variations with the wave
phase; and the variations are greatly affected by the wave
age. In investigating these turbulence statistics, we observed
the existence of coherent vortical structures above the wave.
These vortical structures possess many unique features in
their instantaneous appearance, e.g., the dominance of qua-
sistreamwise vortices that are apparently characterized by the
periodicity of the wave, and the presence of horseshoe vor-
tices that have reversed head and leg positions compared to
the ones typically seen in a flat wall boundary layer.zzf25

© 2009 American Institute of Physics

Downloaded 29 Dec 2009 to 128.220.58.191. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1063/1.3275851
http://dx.doi.org/10.1063/1.3275851
http://dx.doi.org/10.1063/1.3275851

125106-2 D. Yang and L. Shen

These vortices were rarely reported in literature and are the
subject of this paper.

We note that almost all of the previous studies on vorti-
cal structures near wavy boundaries considered stationary
walls only. For flows over stationary boundaries with a single
concave or convex, the formation and attenuation of quasis-
treamwise vortices were studied theoretically (see, e.g., Ref.
26), experimentally (see, e.g., Ref. 27), and numerically (see,
e.g., Ref. 28). For the stationary wavy wall case, there exist a
few numerical studies containing results of vortical struc-
tures. De Angelis et al.* showed that quasistreamwise vorti-
ces are associated with the streaky structures near the station-
ary wavy wall. They suggested that the quasistreamwise
vortices are generated around the reattachment point on the
upstream ridge of the wave crest due to the impact of the
fluids toward the wall. Calhoun and Street® calculated the
Gortler number associated with the Gortler instability
mechanism® and proposed that the Gortler instability is re-
sponsible for the presence of the quasistreamwise vortices.
By investigating successive snapshots of instantaneous flow
fields, Tseng and Ferziger7 followed the evolution of vortices
and illustrated the processes of vortex breakdown and recon-
nection.

As mentioned earlier, the turbulence structure above the
progressive surface waves differs significantly from that
above the stationary wavy wall. For the progressive wave
case, as an early attempt, Tokuda™ performed a stability
analysis for air flows over water waves and predicted that
quasistreamwise vortices would be generated above the wave
trough for strong winds (i.e., slow wave case) and above the
wave crest for gentle winds (i.e., fast wave case). However,
no direct observation or statistical evidence is available yet
to support Tokuda’s prediction.

In this paper, we investigate the coherent vortical struc-
tures above the slow, intermediate, and fast progressive sur-
face waves using the DNS data of Yang and Shen.”' The
objectives of the present study are to identify the different
characteristic vortices in flows of different wave ages, to
quantify the geometrical features of these vortices, to illus-
trate their spatial occurrence with respect to the waveform, to
show their correlation with turbulent momentum and scalar
transport, and to elucidate their evolution processes of gen-
eration, transformation, and attenuation. For this purpose, we
examine instantaneous flow field and its evolution, vorticity
statistics, and conditionally averaged flow field with various
sampling methods.

We organize this paper as follows. The problem defini-
tion and numerical method are discussed in Sec. II. The sta-
tistics, structures, and evolution of coherent vortical struc-
tures in the slow wave case are studied in detail in Sec. III.
Parallel to Sec. III, Sec. IV presents the intermediate and fast
wave cases, which share considerable similarities between
the two but are distinctly different from the slow wave case.
Section V discusses the relationship of the coherent vortical
structures to the turbulent transport. Finally, conclusions are
provided in Sec. VL.
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FIG. 1. Sketch of a three-dimensional turbulent Couette flow over a plane
progressive surface wave. The turbulent flow is driven by a constant shear
stress 7 applied at the top boundary. The surface wave has a wavelength A
and an amplitude a. The wave propagates in the +x-direction with a phase
speed c.

Il. PROBLEM DEFINITION AND FLOW FIELD
OVERVIEW

A. Problem definition

We consider a fully developed three-dimensional turbu-
lent Couette flow over a plane progressive surface wave, as
shown in Fig. 1. The flow is driven by a constant shear stress
7 applied at the flat top boundary. The shear stress is related
to the friction velocity by 7=pu?, where p is the fluid density.
Periodic boundary conditions are used in the streamwise and
spanwise directions. In our simulation, the Cartesian frame is
fixed in space, with x, y, and z being the streamwise, span-
wise, and vertical coordinates, respectively.

The turbulent flow motions are described by the incom-
pressible Navier—Stokes equations

du; N duu; _ ap 1 Fu

L ou (1
Jat (9)61 ﬁxi Re (9.xj ﬁxj

uy

o, =0. (2)

Here, u;(i=1,2,3)=(u,v,w) are Cartesian velocity compo-
nents in the x-, y-, and z-directions, respectively, and p is the
dynamic pressure. Normalization is performed based on the
wavelength of the surface wave A and the mean velocity of
the Couette flow at the top boundary U. The pressure p is
normalized by pU?. The Reynolds number is defined as Re
= UM/ v, with v as the kinematic viscosity.

Surface water wave motion is used as the Dirichlet
boundary condition at the wave surface for the simulation of
the turbulent Couette flow over the wave. In our study, the
wave motion is either prescribed based on wave theory or
simulated together with the turbulence as a coupled system.
For the vortical structures studied in this paper, these two
approaches are found to yield similar results. The results we
present in this paper are mainly for the prescribed wave case,
but in Sec. III A we also present the results from the coupled
simulation as comparison.

Here, we focus on the prescribed water wave boundary
condition. The displacement and the velocity of the wave
surface are given as

Z,, = a sin k(x — cr), (3)
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(tt,, 0, Wy,) = [ake sin k(x = ct),0,— akc cos k(x - cr)].

(4)

Here, z,, is the surface displacement of the wave, a is the
amplitude of the surface wave, k=2m/\ is the wavenumber,
and u,, v,, and w,, are the streamwise, spanwise, and verti-
cal components of the wave orbital velocity at the wave sur-
face, respectively. In this study, the wave steepness is ak
=0.25. In Egs. (3) and (4), linear (sinusoidal) surface wave
solution is used. As shown by Yang and Shen,”' the wave
nonlinearity as well as the surface drift affect some of the
turbulence statistics. Here, we focus on the linear wave case
mainly for the purpose of comparing with other studies on
flows over wavy surfaces. In particular, almost all of the
stationary wavy surface research in literature (reviewed in
Sec. I) used sinusoidal waveform. Our comparison between
linear and nonlinear wave cases, using the data of Yang and
Shen’! (results not shown here due to space limitation), and
comparison between prescribed wave motion and
turbulence-wave coupled simulation (cf. Sec. IIT A) confirm
the results shown in this paper.

In Fig. 1, the surface wave propagates in the
+x-direction, the same as the mean flow direction of the tur-
bulent Couette flow. The effect of wave phase speed is quan-
tified in terms of the wave age c¢/u.. In the present study, we
choose three different wave ages, c/u.=2, 14, and 25. They
are in the ranges of slow wave, intermediate wave, and fast
wave in the problem of wind-wave interaction,
respectively.21’3l

B. Numerical method

In our simulation, we use a boundary-fitted grid system
that enables the direct simulation of the turbulent flow down
to the wave surface with the boundary layer resolved. The
irregular surface-fitted physical space (x,y,z,f) is trans-
formed to a rectangular computational space (&, #,{, 7) with
the following algebraic mapping:

=2y <=2y

£=x, (5)

T=t,

b=y, ¢

H H-z,

Here, the height of the physical domain H is decomposed

into the average height H and a wave induced variation —z,,.
The origin of the z-axis in the physical space is set at the

mean surface level and the top boundary is at z=H.

With Eq. (5), Egs. (1) and (2) are rewritten in terms of
the computational coordinates (€,,{,7). For spatial dis-
cretization, we use a Fourier series based pseudospectral
method in the horizontal directions and a second-order finite-
difference scheme on a clustered staggered grid32 in the ver-
tical direction. The governing equations are integrated in
time by a fractional-step method.” We use a second-order
Adams—Bashforth scheme for the convection terms and a
Crank—Nicolson scheme for the viscous terms. The pressure
Poisson equation is solved iteratively by a modified New-
ton’s method.** Details of our numerical methods are pro-
vided in Refs. 32 and 21.
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FIG. 2. Two-point correlation coefficient at z*=5 above the wave surface
(¢/u,=2): —, Ry — — Ry; and —-—, R, (a) Streamwise direction. (b)
Spanwise direction.

In our DNS, the value of the Reynolds number is Re
=UN/v=9189. This corresponds to the Reynolds number
based on the friction velocity, Re,=u,\/v=283. In terms of
wall units, the wavelength of the surface wave is A\*~283.
Here and hereafter, the superscript “+” denotes the velocity
and length values normalized by wall variables u, and v/u,,
respectively.

The size of the computational domain is
4\ (streamwise) X 3\ (spanwise) X 2\ (vertical). When using
periodic boundary conditions in the horizontal directions,
flow structures that exit from one end of the domain re-enter
from the other end. To assure the domain size is sufficiently
large, we have examined the two-point spatial correlation
coefficients in both the streamwise and spanwise directions.
The case of c¢/u,=2 is plotted in Fig. 2 as an example. The
values fall off to negligibly small within half of the domain
lengths (2\ streamwise and 1.5\ spanwise), in a way similar
to those in the literature.”®** In addition, we found that in the
streamwise direction, the correlation coefficients at one-
quarter of the domain size (§/\=1) decay faster than those
in the flat surface case due to the disruption by the surface
wave motion that has a wavelength of \. Therefore, we con-
clude that the domain size chosen in our simulation is suffi-
ciently large to apply the periodic boundary condition, and
the inlet condition is not a concern in our simulation.

In both the streamwise and spanwise directions, we use
an evenly spaced grid with 128 points in each direction; in
the vertical direction, we use 129 grid points that are clus-
tered toward the bottom and top boundaries. With this grid
resolution, we have uniform grid spacing in the two horizon-
tal directions A&"=8.84 and Ay*=6.63, and vertical grid
spacing A{*=0.42 near the top and bottom boundaries, and
Al"=8.45 in the middle of the channel. In our simulation,
the dissipative scale =(1"/¢)"* based on the averaged dis-
sipation rate & (e.g., Ref. 34) is about two wall units. This
grid resolution, though still larger than the estimated Kol-
mogorov scale, is shown to be sufficient to capture the es-
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TABLE I. Resolution used in DNS of turbulent channel flow.

Resolution in wall unit

Resolution in Kolmogorov scale

Channel type Ax* Ay* Azt Ax/n Ay/n Az/n
Curved channel” 18 6 0.2-8.2 11.25 3.75 0.13-5.1
Plane channel” 12 7 0.05-4.4 7.5 44 0.03-2.8
Stationary wavy wall® 16.8 8.4 0.1-4.2

8.4 8.4 0.1-4.2
Water wave' 10.8 13.5 1.0-5.5
Water wave® 8.84 6.63 0.42-8.45 45 34 0.2-4.3

“Reference 28.
"Reference 34.
‘Reference 4.
dReference 13.
‘Present.

sential turbulent motions (see, e.g., Ref. 28). Our grid reso-
lution is comparable to other DNS studies of turbulence over
flat and wavy surfaces in literature. Table I shows the com-
parison.

Figure 3 shows an example of energy spectra, where k,
and k, are the wavenumbers (normalized by 27/L,, where L,
is the streamwise domain size) in the streamwise and span-
wise directions, respectively. The energy spectra show that
the energy density at high wavenumbers is several orders
lower than that at low wavenumbers and there is no energy
pileup at high wavenumbers, which indicates that the grid
resolution is adequate. Note that the peak of E,,, at k,=4 in
Fig. 3(a) is associated with the surface wave, which has a
wavenumber of k=4. Similar energy density peak has also
been observed by previous studies (e.g., Ref. 4).

For the statistical results shown in this paper, to show the
wave effect, we follow Hussain and Reynolds35 and decom-
pose a random variable f in the wave-following reference
frame as f(x,y,z,0)={(f)(x,2)+f" (x,y,z,t). Here (f) is the
phase-averaged value of f obtained by calculating ensemble
average at fixed phase with respect to the surface wave and
f' is the turbulence fluctuation. With the phase average, only
one period in the streamwise direction is necessary when the
statistics of turbulence is represented. However, for a better
visualization of the turbulence structures, we plot two peri-
ods instead in some figures.

FIG. 3. One-dimensional energy spectra above the wave surface for the
intermediate wave case (¢/u.=14). At z*=4.7: —, E,; — — —, E,,; and ——,
E,.. Atz*=146.3: ---- E,; — — E,,; and — -—, E, ... (a) Streamwise direc-
tion. (b) Spanwise direction.

ww*

In the present study, the computation has been carried
out for about 13 500 viscous time units (ru>/v) after the tur-
bulence has fully developed. Statistics are obtained from 160
instantaneous flow field data within 7u?/v e (9000, 13 500)
with time interval of about 27 viscous time units. This time
interval is two times of the large-eddy turnover time 7,,over
(which is defined as the averaged turbulent kinetic energy
divided by the dissipation rate),’® hence the repeating sam-
pling of individual structures is avoided. Meanwhile, this
time interval differs from the period of the surface wave (35,
5, and 2.8 for the slow, intermediate, and fast waves, respec-
tively) to make sure that the sampling is not at repeating
wave period.

C. Vortices overview

This paper focuses on the coherent vortical structures in
the turbulent Couette flow over the surface wave. In the past
few decades of study on turbulence, a number of vortex iden-
tification schemes have been developed, among which the A,
method has been widely used in previous studies and has
been cross validated with other methods.>’ ™ In the N\,
method, N, is the second largest eigenvalue of the tensor
S%2+Q2, where S and Q are the symmetric and antisymmet-
ric parts of the velocity gradient tensor Vu, respectively. Fol-
lowing Jeong and Hussain,”” we define the region with N\,
smaller than a negative threshold as the interior of a vortex
core.

To better illustrate the effect of surface wave on vortex
dynamics, in the remainder of this paper we present our re-
sults in a frame traveling at the wave phase speed in the
+x-direction. As shown in Fig. 4, since the wave phase speed
is larger than the wave orbital velocity [i.e., ¢>akc in Eq.
(4)], fluid particles in the vicinity of the wave surface travel
in the —x-direction in the wave-following frame. Compared
to the slow wave case, the vertical extent of this reversed
flow region is relatively larger for the immediate and fast
wave cases. As a result, relative to the waveform, the near-
surface vortical structures convected by the Couette flow
travel in the +x-direction for ¢/u.=2, but in the —x-direction
for c/u.=14 and 25. As will be shown in the subsequent
sections, the difference in the relative motion of the vortices
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P2 P4

FIG. 4. Sketch of vortical structures above (a) slow wave (c/u,=2) and (b)
intermediate wave (c/u,=14). The mean streamlines in the wave-following
frame are plotted on the (x,z)-planes for both cases. The arrow next to ¢
denotes the wave propagation direction in the fixed frame. In the wave-
following frame, the surface waveform is stationary.

with respect to the waveform results in disparate vortex dy-
namics between the slow and intermediate/fast wave cases.
In Fig. 4(b), only the intermediate wave case is shown. The
streamline pattern of the fast wave case is similar to that in
the intermediate case, except that the location of the cat’s
eyes12 is higher. The vortical structures above the fast wave
is also similar to those above the intermediate wave, and the
comparison between these two cases will be given in Sec.
IV A.

Hereinafter, we define the streamwise direction based on
the wave propagation direction for all the cases, i.e., the
+x-direction is referred to as the downstream direction and
the —x-direction is referred to as the upstream direction. As
shown in Fig. 4, the surface wave is marked by five reference
positions: P; and P5 denote the wave troughs, P; denotes the
wave crest, and P, and P, denote the upstream and down-
stream nodes of the wave, respectively, where the wave sur-
face intersects the mean surface level. Based on these five
reference positions, differeng&gions of the wave surfagg_r/e
referred to as follows: (1) P,P5: windward face; (2) P;Ps:
leeward facg;\(é) P, P,: the slope downstream of the wave
trough; (4) P,Ps: the slope upstream of the wave trough; (35)
P, P5: the slope upstream of the wave crest; and (6) P;P,: the
slope downstream of the wave crest. In the following sec-
tions of this paper, the above terms are used to describe the

positions of the vortical structures and other turbulence
quantities with respect to the waveform.

lll. COHERENT VORTICAL STRUCTURES
ABOVE THE SLOW WAVE

In this section, we study the characteristics of coherent
vortical structures above the slow wave (c/u.=2). Figure 5
shows the instantaneous vortical structures near the wave
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FIG. 5. Snapshot of near-surface coherent vortical structures in the turbu-
lence field over the slow wave (c/u,=2). The vortical structures are identi-
fied by the isosurface of \,=—1.0.

surface. It is found that the dominant vortical structures are
the quasistreamwise vortices, which have the primary dimen-
sion along the streamwise direction. Most of these quasis-
t{_ein_llwise vortices are located above the windward face
[P, P in Fig. 4(a)], i.e., left of the wave crest in Fig. 5. Some
o,f\thJem extend over the crest to above the leeward face

[P5Ps in Fig. 4(a)]. The streamwise size of these vortices is
apparently constrained by the underlying wave, with the
longest vortices comparable to the wavelength. In addition to
these quasistreamwise vortices, there exist reversed horse-
shoe vortices near the wave trough. Opposite to the horse-
shoe vortices often observed in turbulence boundary layers,
these reversed ones have their heads upstream but legs
downstream. For the current case, it is found that about 26%
of horseshoe vortices have the “forward” shape, while about
74% of them have the “reversed” shape. Yang and Shen®!
conjectured that the characteristic vortical structures in flows
over slow waves are coherent quasistreamwise and reversed
horseshoe vortices, as sketched in Fig. 4(a). In this section,
we examine the features of the vortical structures by means
of vorticity statistics, conditional average, and evolution ob-
servation.

A. Statistics of vortical structures above the slow
wave

The occurrence of the quasistreamwise and reversed
horseshoe vortices can be shown through the statistics of
vortex inclination angles (see, e.g., Ref. 23). In this study, the
two-dimensional inclination angles of the streamwise direc-
tion to the projections of the vorticity vector in (x,z)- and
(x,y)-planes are defined as 6, =tan"'(w,/w,) and 6,
=tan‘1(w}’,/ w,), respectively, with the sign convention for the
angles shown in Fig. 6. The statistics of the inclination

Z, Wy
i 7"-)y
l‘awz

FIG. 6. Sign convention for vorticity inclination angles 6, and 6,,. Here, 6,,
is the angle from the +x-axis to w,i+w_k in the (x,z)-plane; 0,y is the angle
from the +x-axis to w,i+wj in the (x,y)-plane.
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45 90 135 180 225 270 315 360
(a) exz(deg')

45 00 135 180 225 270 315 360
(b) exy(deg.)

FIG. 7. Probabilities of two-dimensional vorticity angles at four streamwise
locations above the slow wave (c/u,=2): —, windward face; — — —, crest;
—-—, leeward face; and - - --, trough. The vertical heights are chosen to be the
locations of peak F,, as shown in Fig. 8. Here, 6,, is the angle from the
+x-axis to the vorticity w,i+wK; 6, is the angle from the +x-axis to the
vorticity w,i+o]j. )

angles are weighted by the magnitudes of the respective pro-
jected vorticity vectors.” For vortices in the (x, y)-plane, the
vorticity fluctuation a); is used to exclude the mean shear in
the boundary layer.

Figure 7 shows the probabilities of 6,, and 6,,. We con-
sider four streamwise locations, which are above the wind-
ward face, crest, leeward face, and trough, respectively.
Above the windward face, 6,, is concentrated around 30° and
210°, and Oy is concentrated around 195° and 345°. The
distribution of @, indicates that the vortices are mainly hori-
zontal, with an inclination to the upward direction following
the wave surface upstream of the wave crest. The concentra-
tion of 6,, indicates the dominance of streamwise vorticity,
which corresponds to the quasistreamwise vortices above the
windward face of the wave; it also indicates that the vorticity
vectors with the opposite signs of w, tilt to the opposite sides
of the x-axis in the (x,y)-plane. Above the crest, the concen-
tration of 6, shifts slightly toward the x-axis to be around
25° and 205°, while the concentration of 6, shifts slightly
away from the x-axis to be around 200° and 340°.

Above the leeward face and above the trough, 6, is
concentrated around 25° and 205°, and 6,, is concentrated
mainly around 220° and 320°. In addition, there also exists a
concentration of ny around 90°, which corresponds to the
spanwise vortical structures (i.e., the heads of reversed
horseshoe vortices), as shown in Fig. 5.

To quantify the spatial frequency of the occurrence of
the quasistreamwise and reversed horseshoe vortices, we de-
fine four detection functions as

1 if Ny(x,y,z,0) =0,

I b b 7t = . 6
o%.y:2.1) 0 otherwise, ©)
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Ix(xsysz’t)
N e
_JLif \,'w)26+ w? > |a)),| and |, > |w,|, )
0 otherwise,
1 if \Ja)f+ “’5 < |a)y ,
L(x,y,2,t) = . (®)
0 otherwise,
IZ(X»Y»ZJ)
Ui Nel+ ol > o] and o/ <|o], ©)

0 otherwise.

Here, I, detects the vortex core, and /., I,, and I, detect
vortices pointing primarily in the x-, y-, and z-directions,
respectively. The variables w,, w,, and w, are the Cartesian
vorticity components in the x-, y-, and z-directions, respec-
tively. We define a quantity F,=(Iy-1,-|\;|) to denote the
occurrence of the spanwise vortex via the head portion of the
reversed horseshoe vortical structure. Here (-) denotes the
phase averaging. In calculating F,, we weigh the quantity by
the magnitude of \, to highlight strong vortices. Similarly,
we use F,=(I,-I,-|\,|) to denote quasistreamwise vortices
that are mainly horizontal, and F,=(I,-I,-|\,|) for vortices
that have a large vertical component.

Figure 8(a)(i) shows the contours of F, for the case of
slow wave (c/u,=2). The high intensity region of F, is lo-
cated in a band between [0.02\,0.2\] above the wave sur-
face, with the peak value above the windward face of the
wave. This distribution indicates the concentration of quasis-
treamwise vortices above the windward face of the slow
wave. Figure 8(b)(i) shows the contours of F,. The high
intensity region of F, starts above the wave crest, extends
downstream, and reaches its peak above the wave trough.
Note that F' ) denotes the occurrence of the spanwise vortices,
which correspond to the heads of the reversed horseshoe vor-
tices in this case. The result in Fig. 8(b)(i) indicates that the
reversed horseshoe vortices are concentrated above the wave
trough. The distributions of quasistreamwise and reversed
horseshoe vortices indicated, respectively, by F, and F are
consistent with the observation of the instantaneous flow
field in Fig. 5.

As introduced earlier, the results shown in this paper are
obtained from the simulation of flow over prescribed wave
motion. To validate this approach, we have also performed
air-water coupled simulations that directly capture the two-
way interaction between the wind and the wave. As a result,
the air flow features such as the turbulence intensity and the
water flow features such as the shape of the wave evolve
dynamically in the simulation, and the results are expected to
be more physical.

For air-water coupled motion, two different simulation
approaches have been used. In the first approach, the current
DNS is coupled with wave simulation using a method called
simulation of nonlinear ocean wave (SNOW),* which is
based on the computationally efficient high-order spectral
(HOS) method of Dommermuth and Yue.*' A brief descrip-
tion of this DNS-SNOW coupled approach is given in Ap-
pendix A; the numerical details can be found in Refs. 42 and
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FIG. 8. Contours of (a) F, and (b) F, above the slow wave (c/u,=2). Results are obtained from (i) current DNS, (ii) DNS-SNOW coupled simulation, and
(iii) level-set simulation. The contour interval is 0.025. In (ii) and (iii), the mean surface elevation is denoted by the solid lines at the bottom of the plots, while

the standard deviations of the surface are denoted by the dashed lines.

43. In the DNS- SNOW simulation, a fully developed turbu-
lent flow over a water wave with (ak,c/u.)=(0.1,2) is used
as the initial condition. The wave then evolves under wind
pressure forcing. We take the sample data from ak=0.12 un-
til ak=0.27 before the small-scale wave breaking (e.g., spill-
ing breaking) happens (SNOW is a perturbation-based
method and cannot describe wave breaking explicitly with-
out modeling).

In the second approach, a level-set method (LSM) is
used to simulate the turbulence-wave coupled flow, in which
the air and water are treated together as one fluid system with
varying density and viscosity and the flow interface is repre-
sented implicitly by a level-set function.** A brief description
of the LSM is given in Appendix B. Similar to the DNS-
SNOW simulation, the wave with the initial condition
(ak,c/u,)=(0.1,2) grows in the simulation. We take the
sample data from ak=0.18 until ak=0.31, which is steeper
than the DNS-SNOW case. The surface wave is highly non-
linear with large steepness. Under strong wind forcing (small
value of c/u.), the shape of the steep water wave departs
from the standard Stokes waveform and becomes asymmet-
ric about the wave crest. The surface wave from our LSM
simulation has an average skewnesg_i:/ N,/ )x,:/_lgl, where

\,, and \; are horizontal lengths of P P; and P;P5 (Fig. 4),
respectively. This skewness agrees well with the measure-
ment of Chang et al.,¥ who reported a wind-forced steep
water wave with a skewness of §=1.25.

As shown in Fig. 8, despite the difference in the wave-
form among wave simulations using the current DNS, DNS-
SNOW, and LSM, the statistics of F, and F, are essentially
the same among the three approaches. The difference is
quantitative rather than qualitative, and the indication for the
quasistreamwise vortices and horseshoe heads is obvious and
consistent for all the three approaches. For LSM, we have

also tested different Weber numbers so that the capillary
wave appears at different scales (in Fig. 8, the surface fluc-
tuations are denoted by the dashed lines) and found that the
difference in the coherent vortical structures is negligibly
small (comparison not shown due to space limitation). The
insensitivity of the coherent vortices to the surface details
suggests that the vortices are mainly affected by the outer
flow structure, as illustrated in Fig. 4 (more results on the
streamline pattern for the slow wave case will be given in
Fig. 15). The motion of the outer flow relative to the wave-
form is dominated by the wave age. Therefore, the wave age
is the most important parameter governing the characteristics
of coherent vortices in turbulence over progressive waves.

B. Conditional sampling based on QDs of turbulence
motion

Previous research of flat wall bounded turbulence indi-
cated that the near-wall coherent vortical structures are often
related to the turbulence motions of ejection and sweep (see,
e.g., Ref. 24). Several conditional sampling methods have
been developed to educe the vortical structures associated
with the turbulence motions. Examples include the variable-
interval time-averaging method,*® the variable-interval
space-averaging (VISA) method,” the quadrant (QD)
method,”” and the linear stochastic estimation method.*® In
our study, we have used the VISA and QD methods to educe
the vortical structures above the wave surface and to illus-
trate the relationship between vortical structures and momen-
tum transport. Good agreement between these two ap-
proaches has been obtained. In this paper, we present only
the QD results without losing generality.

The contribution to the Reynolds stress (—u’w’) can be
divided into four QDs: Q1 (u'>0,w’'>0), Q2 (u' <0,w’
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x/A
FIG. 9. (Color online) Contours of the normalized Reynolds stress
(—u'w'y/u? over the slow wave (c/u,=2). High intensity regions of
(=u'w")y/u? and (—u'w'),/u? are denoted by the 0.75 contour with solid and
dash-dot lines, respectively. Points A (x/A=0.75, z/A=0.07), B (x/\
=1.00, z/A=0.10), C (x/\=1.25, z/A=0.16), and C (x/A=1.50, z/\
=0.21) are the detection positions for the QD-2 method; point E (x/\
=0.75, z/A=0.06) is the detection position for the QD-4 method.

>0), Q3 (u' <0,w’<0), and Q4 (' >0,w’ <0). Hereinaf-
ter, the contribution to the total Reynolds stress from the
mth-QD is referred to as (—u'w’),,; the QD conditional av-
eraging method for detecting the mth-QD related structures
is referred to as the QD-m method. Taken QD-2 method as
an example, the detection function is defined as?

D(y,t;x,2)
1 if u' <0, w >0

0 otherwise,

and u'w'/(u'w’y> B,

(10)

where (3 is a positive threshold that controls the intensity of
the Q2 events to be detected.

As shown by previous studies, the distribution
of (—u'w') has a strong dependence on the wave phase, and
this dependence varies significantly as the wave age changes.
Figure 9 shows the color contours of the total Reynolds
stress above the slow wave (c/u,=2). Similar to the flat wall
case,”* the majority of the contribution to the total Reynolds
stress (—u'w’) comes from the Q2 (ejection) and Q4 (sweep)
events. As shown in Fig. 9, the high intensity regions of
(—u'w'), and (—u’w'), are located above the windward face
and the wave trough, which are indicated by solid and dash-
dot lines, respectively. The contribution from the Q1 and Q3
events is negligible and is not shown here. Based on the
distribution of Reynolds stress, we choose the representative
detection positions A-D for QD-2 method and E for QD-4
method, which are marked in Fig. 9. The threshold in Eq.
(10) is chosen to be B=2.

Figure 10(a) shows the conditionally averaged turbu-
lence structure associated with the Q2 events around the de-
tection position B. As shown, two counter-rotating quasis-
treamwise vortices exist in the conditionally averaged flow
field. When observed along the +x-direction, the vortex on
the left side has a streamwise vorticity component w, <0,
and the vortex on the right side has a streamwise vorticity
w,>0. It is apparent that the counter-rotating vortex pair
induce an upwelling motion (ejection) between them, which
results in high value of —u'w’ there.

To check the sensitivity of the conditionally averaged
result to the sampling criterion S, we repeat the above con-
ditional average calculation with 8=0.5, 1, 4, and 8 and
obtained consistent characteristics of the vortical structure,
with only the intensity of the structure slightly changed. This

16,17,19,21
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FIG. 10. Educed coherent structure by QD conditional sampling method
with (a) QD-2 detection at location B [Fig. 9] and (b) QD-4 detection at
location E (Fig. 9). The detection threshold is B=2. The vortical structures
are represented by the isosurface of N\,=-0.1. The structure with w,>0 are
marked by the dark color; the structure with w, <0 are marked by the light
color. The contours of the normalized turbulent momentum flux —u’w'/u>
and the fluctuation velocity vectors (v’,w’) are shown on the (y,z)-plane
crossing the detection point.

result is consistent with a similar validation in Ref. 47 and
confirms that the result we obtained with 8=2 is representa-
tive.

Figure 10(b) shows the conditionally averaged reversed
horseshoe vortical structure associated with the Q4 events
around the detection position E. The downwelling motion
(sweep) associated with its head and two counter-rotating
legs generates large turbulent momentum flux —u’w’. The
result we obtained here is consistent with Kim and Moin;47
they studied a turbulent channel flow and showed that the
reversed horseshoe vortices are associated with the sweep
event.

In order to study the dependence of these QD-associated
vortical structures on the wave phase, we compile the results
from the detection positions A—E and plot them together in
Fig. 11. In order to describe the spatial feature of these vor-
tical structures, we define two angles: « is the angle between
the x-axis and the projection of the vortical structure in the
(x,y)-plane (hereinafter is referred to as the tilting angle);
and ¢ is angle between the x-axis and the projection of the
vortical structure in the (x,z)-plane (hereinafter is referred to
as the inclination angle). The values of the tilting and incli-
nation angles of structures in Fig. 11 are listed in Table II. It
should be noted that although the size of the vortical struc-
ture varies when different values of \, are used, the essential
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FIG. 11. Educed vortical structures above the slow wave (c¢/u,=2): (a) top
view and (b) side view. Structures A-E are educed by detectors at locations
A-E in Fig. 9, respectively. The vortical structures are represented by the
isosurface of \,=-0.071. The structures with w,>0 are marked by the dark
color; the structures with w, <0 are marked by the light color.

geometry of the vortical structure is not sensitive to \,. In
Fig. 11, to compare the sizes among different vortical struc-
tures, we use a fixed value of A, for them.

As shown in Fig. 11, above the wave trough (position
A), the Q2 event is associated with a horseshoelike vortex
with the head downstream and the legs upstream; while
above the windward face (position B), wave crest (position
C), and the leeward face (position D), the vortical structures
change to counter-rotating vortex pairs. Interestingly, the re-
sult shows that above the windward face, the tilting angle «
decreases as the streamwise position moves downstream
(Table II). The result also indicates that the size of the vor-
tical structure reduces significantly above the leeward face
compared to above the windward face. The Q4 event above
the wave trough (position E) is associated with a reversed
horseshoe vortex with the head on the upstream side. Due to
the bulky geometry of structure E, its inclination angle is
difficult to specify.

We also note that the direct observation from the instan-
taneous flow field (Fig. 5) indicates that the quasistreamwise
vortices often appear individually. In the conditionally aver-
aged field, the paring of quasistreamwise vortices is an arti-
fact of the conditional averaging method and is as expected
(see, e.g., Ref. 49). Nevertheless, the vortical structures
educed by the QD method provide useful information such
as the wave phase dependence of the coherent vortical struc-
tures above the surface wave. To obtain more accurate result
on the geometry of the vortical structures, we investigate in
Sec. III C direct extraction of the characteristic vortices for
conditional sampling.

Phys. Fluids 21, 125106 (2009)

C. Direct sampling of characteristic vortical
structures

Instead of educing the coherent vortical structures by
detecting other related physical quantities such as the Rey-
nolds stress and the QDs, we can obtain the vortical structure
samples directly based on the geometric characteristics of the
vortices. Details of the direct sampling procedure are given
in Appendix C.

After the samples are obtained, we interpolate these
sample fields from the boundary-fitted grid system to a Car-
tesian grid system. The sample fields are then shifted hori-
zontally so that the points of the maximum |w,| in the struc-
ture are located at the horizontal center of each sampling
window. We then calculate the ensemble average of the
sample fields. We remark that both the velocity and the wave
surface elevation of the sample fields are averaged. The
ensemble-averaged flow field provides the details of the vor-
tical structure, while the ensemble-averaged surface eleva-
tion illustrates the spatial relationship between the coherent
vortical structures and the underlying surface wave.

Figures 12(a) and 12(b) show the ensemble-averaged
quasistreamwise vortex above the slow wave (c¢/u,=2) ob-
tained from this direct sampling method. The averaged qua-
sistreamwise vortices are located above the windward face

[;’7’-; in Fig. 4(a)] of the wave, consistent with the result in
Fig. 8. Hereinafter, a quasistreamwise vortex with positive
w, is referred to as QSP, while a quasistreamwise vortex with
negative w, is referred to as QSN. When observed along the
+x-direction, the vortex QSN inclines to the —y-direction as
shown in Fig. 12(b) (the vortex QSP inclines to the
+y-direction; result not shown). This is consistent with the
result of the QD method in Fig. 11. The bending tail of the
vortex is smeared out during the averaging process because
of the variation in the bending direction.

In the averaged field, no quasistreamwise vortex with an
opposite sign of w, is observed near the primary vortex. This
result is consistent with the observation of the instantaneous
flow field (Fig. 5) that the quasistreamwise vortices above
the surface waves usually appear individually rather than in
pairs.

The ensemble-averaged result of the reversed horseshoe
vortex is shown in Figs. 12(c) and 12(d). The head of the
reversed horseshoe is captured clearly. Due to the large
variation in the tilting and inclination angles of the legs, the
tails of the two legs are smeared out. The ensemble-averaged
surface elevation indicates that the reversed horseshoe vortex

TABLE II. Tilting and inclination angles of structures in Fig. 11.

Q2 Q4
Vortical structure A B C D E
@ 31.5° 13.5° 9.5° 13.5° 36°
© 25.5° 20.5° 21.5° 24°
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FIG. 12. Ensemble-averaged vortical structures from the extracted samples
for the case of slow wave (c/u,=2): (a) side view and (b) top view of
quasistreamwise vortex with w,<0; (c) side view and (d) top view of re-

versed horseshoe vortex. The structures with w,>0 are marked by the dark
color; those with w, <0 are marked by the light color.

is located above the wave trough, with its head upstream of
the trough. This spatial relationship is consistent with the
result in Fig. 11.

Since the criterion of the above direct sampling method
is based on the spatial features (i.e., geometry and primary
direction) of the vortical structure, the educed vortical struc-
tures by this method resemble the instantaneous ones more
than those educed by the QD method do. The results from
the above direct sampling method confirm the existence and
characteristics of the reversed horseshoe vortices above the
wave trough and the quasistreamwise vortices above the
windward face, which are found to be associated with the
turbulent momentum flux by the QD-m method. The direct
sampling result also indicates that the quasistreamwise vor-
tices often appear individually, which is consistent with the
direct observation of the instantaneous flow field.

Phys. Fluids 21, 125106 (2009)

(a) t'=11410.2

(d) t'=11448.0

trough crest trough crest

FIG. 13. History of vortex evolution above the slow wave (c¢/u,=2). The
flow field is observed from above in the wave-following frame. The vortical
structures are identified by the isosurface of N,=—1.2. The structures with
,>0 are marked by the dark color; the structures with @, <0 are marked
by the light color. The positions of the wave trough and crest are indicated
by the dashed lines.

D. Evolution of vortical structures over the slow wave

The results in Secs. III B and III C indicate that different
types of vortical structures exist at different streamwise lo-
cations with respect to the waveform. In this section we in-
vestigate their evolution and reveal the transformation
among them.

We first examine the instantaneous vortex fields at suc-
cessive times. Figure 13 shows the history of vortex evolu-
tion above the slow wave (c/u.=2). As discussed in Sec. II,
in the slow wave case, the vortices propagate from left to
right in the wave-following frame [Fig. 4(a)].

At tt=11 410.2 [Fig. 13(a)], the reversed horseshoe vor-
tices A and B are located above the wave trough, with their
heads slightly upstream of the wave trough. At r*=11 426.4
[Fig. 13(b)], vortex A breaks at its head and the two legs
becomes QSP A; and QSN A,. The QSP A, is then further
turned to the streamwise direction above the trough,
stretched along the streamwise direction above the windward
face, and extended over the wave crest [Fig. 13(c)]. Mean-
while, the QSP leg of the reversed horseshoe vortex B dis-
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appears and its QSN leg B, merges into the QSN A,, which
is then turned to and stretched along the streamwise direction
as well [Figs. 13(c)-13(e)]. As the quasistreamwise vortices
A; and A, propagate over the wave crest, they lose their
intensity above the leeward face of the wave crest and above
the next wave trough [Figs. 13(e) and 13(f)].

The result in Fig. 13 indicates that there exist transfor-
mations from the reversed horseshoe vortices to the quasis-
treamwise vortices due to the vortex turning from spanwise
direction to streamwise direction above the wave trough and
the streamwise vortex stretching above the windward face of
the wave. These transformations are found to be universal
above the slow wave and they are responsible for the forma-
tion of the majority of the quasistreamwise vortices. This
evolution also provides an explanation for the vortices dis-
tribution educed by the QD method (Fig. 11). The variation
in the tilting angle « in Fig. 11 can be regarded as a conse-
quence of this transformation process.

The above investigation of vortex evolution history indi-
cates that vortex turning and stretching play an important
role in the formation of the quasistreamwise vortices. We
now study the vorticity dynamic equation to quantitatively
investigate the effect of vortex turning and stretching in the
vortex evolution process. The phase-averaged dynamic equa-
tions for vorticity components w, and w, are (e.g., Ref. 50)

D{w)'? du \'? (@) du \'"? ,du Ip
O e P e
Dr “ ox * @) Jy
kﬁ—l
7 7, T,
au\'"”? 1
+ — ) +—(VZp )7,
wza Re< wx)
1
7 D (11)
CICHAS (FRAT SRY G S R
Dt *ox Y\ gy 7 dy
—_— N —_—
7 B, .,
aw\"”? 1
+lo—) +—(Vw)r.
Yoz Re< 2
— -
7 D (12)

Here, D/Dt is the material derivative, Tl and ’2'3 are the
vortex stretching of w, and w,, respectively, T(z * ]) is the
vortex turning from ; to w;, and D' is the viscous diffusion
of w;. The turning term associated with w, is further decom-
posed into the contributions from (w) and w which are
denoted by the subscripts m and ¢, respectively. The operator
(f)’ denotes the phase average of f with the condition w;
>( [the problem is antisymmetric between ;>0 and w;
<0; if we do averaging for both, the terms in Eqgs. (11) and
(12) will be zero].

In this subsection, we focus on the dynamic equation of
w, to study the evolution of the quasistreamwise vortices.
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FIG. 14. Contours of the vortex stretching and turning terms for the positive
streamwise vorticity above the slow wave (¢/u,=2) normalized by (u?/v)%:
(a) vortex stretching of w,, 7= (w (Jul dx))'?; (b) vortex turning from the
spanwise v0mc1ty fluctuation ! to w,, 7*2, (w (duldy))'?; (c) vortex turn-
ing from o] to w, by the strain field Sy,, ’Z;,|51mm (w S12)'7; and (d) vortex
turning from w, to w, by the rotation field Qp, T |mmmm—(w Q)7 The
dashed contour lines represent negative values.

Among the terms in Eq. (11), 7} and 73, are found to be
dominant. Here, 71, represents the vortex stretching of the
quasistreamwise vortices and 73, represents the vortex turn-
ing from the spanwise vortices (i.e., the heads of the reversed
horseshoe vortices) to the streamwise vortices.

We note that in some literature (e.g., Ref. 50), 7' 1s used
to study vortex stretching and turning mechanism; whlle in
some others (e.g., Ref. 36), this term is further decomposed
nto

(914,' ip i
w— ) ={(wS; ) +{w; QU)”
oyl L LT
i T/‘l|strain 7}1 |rolation
7 ' (13)

where  S;;=0.5(du;/ ox;+du;/dx;)  and  ;=0.5(u;/ dx;
—du;/ dx;) are the symmetric (strain rate) and antisymmetric
(rotation rate) parts of the velocity gradient tensor, respec-
tively. Here, the terms 'Zj-|stmin are the vortex stretching (when
i=j) and turning (when i+#j) by the strain rate; the terms
T |;otation are the vortex turning by the rotation rate. We note
that the stretching terms satisfy 70 =7} | ain and 3= T3 |girains
we also note that due to w Qll+w Q,2+w Q3= O the total
contributions to vortex dynamics due to );; from j=1, 2, and
3, 2 T|rotcmon’ is zero.

As shown in Fig. 14(a), the high intensity region of 'f is
located above the windward face of the wave, where the
quasistreamwise vortices concentrate [Figs. 8(a) and 11].
Above the slope downstream of the wave crest, the intensity
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FIG. 15. Streamline patterns over (a) stationary wavy wall and (b) slow
water wave. In (b), the streamlines are calculated in the wave-following
frame.

of the vortex stretching reduces significantly; without the
support of vortex stretching, the quasistreamwise vortices are
dissipated there, which has been indicated by the low value
of F, in Fig. 8(a) and the relatively smaller size of vortex D
in Fig. 11.

Figure 14(b) shows that the high intensity region of the
vortex turning term ’]';t is located above the wave trough.
This location is consistent with the concentration region of
the reversed horseshoe vortices [Figs. 8(b) and 12(c)]. The
above coincidence indicates that there exists transformation
from the reversed horseshoe vortices to the quasistreamwise
vortices above the wave trough. For the slow wave case, the
magnitude of dv/dx is smaller than that of du/dy. Therefore,
the distributions of 75, |gin [Fig. 14(c)] and 73, |,ouion [Fig-
14(d)] are similar to the distribution of Tét [Fig. 14(b)], with
the magnitudes multiplied by the 0.5 factor. The consistency
between the mechanisms indicated by 7;: and ’Z;Aslmin shows
that the above analysis is valid for both definitions of vortex
turning. The distributions of vortex stretching and turning
shown in Fig. 14 are consistent with the evolution history of
the vortical structures shown in Fig. 13.

Finally, we note that the formation of quasistreamwise
vortices over a stationary wavy wall was investigated in lit-
erature. Calhoun and Street® calculated the Gértler number in
a turbulent flow over a stationary wavy wall and showed that
the flow is unstable above the windward face of the wave.
Tseng and Ferziger7 examined instantaneous vorticity field in
successive times, and showed the breakdown and reconnec-
tion of quasistreamwise vortices. Phillips et al” performed a
stability analysis and found that the Craik—Leibovich
CL2-0(1) instability’*>® mechanism leads to the formation
of quasistreamwise vortices above the stationary wavy wall.
In the present slow wave case, although the turbulence above
the wave is different from that above a stationary wavy wall
because of the boundary motion of the wave, there are still
some similarities in the streamline patterns.21 As shown in
Fig. 15, for both the slow and stationary wave cases, there
exists a circulation zone right above the wave trough, and the
outer flow streamlines leave the wave surface and stride over
the circulation zone. The size of the circulation zone in the
slow wave case is larger than that in the stationary wave
case. Above the windward face, in both cases the outer flow
streamlines reapproach the wave surface and have a concave
curvature. As shown by Calhoun and Street,® this concave
streamline curvature is critical for the generation of flow in-
stability and the formation of quasistreamwise vortices in the
stationary wavy wall case. Similar instability mechanism is
expected for the slow wave case due to the similar concave
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FIG. 16. Snapshots of near-surface coherent vortical structures in the turbu-
lence fields over the (a) intermediate wave (c/u,=14) and (b) fast wave
(c/u,=25). The vortical structures are identified by the isosurface of \,
=-1.0. The gray color on the wave crests and troughs corresponds to large
spanwise vortex sheets.

streamline pattern above the windward face. In addition to
this direct formation of streamwise vortices due to the insta-
bilities, however, in this study we found that the transforma-
tion of reversed horseshoe vortices to quasistreamwise vorti-
ces is significant. This new finding may add another possible
mechanism for the explanation of quasistreamwise vortex
formation over wavy surfaces.

IV. COHERENT VORTICAL STRUCTURES
ABOVE THE INTERMEDIATE AND FAST WAVES

In this section, we study the coherent vortical structures
above the intermediate (¢/u,=14) and fast (¢/u,=25) waves.
Figures 16(a) and 16(b) show the instantaneous vortices
above the intermediate and fast waves, respectively. We note
that there exist large spanwise vortex sheets on the wave
crests and troughs. These vortex sheets are caused by the
strong action of the wave orbital motion [measured by akc in
Eq. (4)] on the turbulent flow. In the case of slow wave
(c/u.=2), the vortex sheet is not observed because the wave
motion is relatively slow. Figure 16 shows that for both the
intermediate and fast waves, quasistreamwise vortices are the
dominant vortical structure above the wave surface. The spa-
tial frequency of the occurrence of the quasistreamwise vor-
tices in the case of ¢/u.=14 is lower than that in the case of
c/u,=25. Over the wave crest and the slope upstream of the
wave crest, the vortices bend to follow the local curvature of
the wave surface. Above the slope downstream of the wave
trough, the vortices incline vertically to have large vertical
parts. Figure 4(b) shows a sketch of the characteristic vorti-
ces for the intermediate wave case. We note that different
from the slow wave case, in the wave-following frame, the
vortices travel in the —x-direction.
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FIG. 17. Probabilities of two-dimensional vorticity angle 6,, (the angle from
the +x-axis to the vorticity i+ w k) at four streamwise locations above the
(a) intermediate wave (c¢/u,=14) and (b) fast wave (c/u,=25): —, wind-
ward face; — — —, crest; —-—, leeward face; and ----, trough. The vertical
locations are chosen to be the locations of peak F, and F, as shown in Fig.
18.

In Secs. IV A-IV D, we follow the same procedure as in
the slow wave case to analyze the different aspects of the
characteristics of the quasistreamwise vortices for the inter-
mediate and fast wave cases.

A. Statistics of vortical structures
above the intermediate and fast waves

We first study the two-dimensional vorticity inclination
angle 6, (defined in Fig. 6) in a way similar to that in the
slow wave case. Figure 17(a) shows the probability of 6,.
above the leeward face, crest, windward face, and trough for
the intermediate wave case (c/u,=14). Above the leeward
face, 6, is concentrated around 10° and 190°. Above the
wave crest, 6, is concentrated around 25° and 205°. Further
upstream to above the windward face, 6,, is concentrated
around 85° and 265°, indicating the significance of the ver-
tical vorticity component w, there. Above the wave trough,
the distribution of 6,, has a concentration around 90° and
270° and another concentration around 20° and 200°. The
probability distribution in the fast wave case [Fig. 17(b)] is
similar to that in the intermediate wave case.

Next, we use the conditionally averaged quantities F,
and F, (defined in Sec. III A) to measure the spatial fre-
quency of the occurrence of streamwise and vertical vortices,
respectively. Figure 18 shows the contours of F, and F, for
the cases of c¢/u.=14 and 25. In both cases, the high inten-
sity regions of F, and F, are located above the wave crest
and windward face, respectively. The difference in the loca-
tions of the peak regions between F, and F_ indicates that the
vortices are horizontal above the crest, but incline to the
vertical direction over the windward face of the wave. We
also find that the magnitudes of F, and F, in the case of
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FIG. 18. Contours of F, and F, above the (a) intermediate (c/u.=14) and
(b) fast (c¢/u,=25) waves. The contour interval is 0.025.

c/u,=25 are larger than those in the case of ¢/u,=14, which
indicates the higher spatial frequency of vortices in the fast
wave case (cf. Fig. 16). Despite the difference in the spatial
frequency, the results in Figs. 17 and 18 indicate that the
essential features of the vortical structures in the intermediate
and fast wave cases are very similar to each other. Due to
space limitation, in subsequent subsections we present the
intermediate wave results only.

The above results indicate that as the near-surface flow
propagates in the —x-direction in the wave-following frame,
the projections of the vorticity vectors in the (x,z)-plane are
almost horizontal above the leeward face and the crest, and
then turn to the vertical direction above the windward face.
The vortices further propagate to above the trough; mean-
while, new streamwise vortices are formed above the wave
trough for the next wave period. The evolution of vortices
will be studied in Sec. IV D.

It should be mentioned that in Fig. 16 (as well as in Fig.
5), the lower half of the computational domain is plotted.
However, noticeable vortical structures are mainly located
near the wave surface. This near surface concentration can
also be seen from Fig. 18, which shows that the spatial fre-
quency of the vortical structures reduces rapidly as the height
becomes large. It should be pointed out that in the fast wave
case, the critical layer height is too large to have significant
effect on near surface events.'' Figure 18 shows that vortical
structures are rare above z=M\/ 7. Previous numerical studies,
e.g., Refs. 13 and 16, showed that at z> N/, the effect of
wave motion on turbulence vanishes. The domain heights in

their studies are about one wavelength, H=\. In our simula-
tions, an even larger value of H=2\ was used, which is
sufficient to capture the essential vortex dynamics discussed
in this paper.

B. Conditional sampling by the QD-m method

The distributions of the Reynolds stress (—u’w’) in the
intermediate and fast wave cases are significantly different
from that in the slow wave case (see, e.g., Refs. 16, 19, and
21). The Reynolds stress is negative above the windward
face of the wave but positive above the leeward face.
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FIG. 19. (Color online) Contours of the normalized Reynolds stress
(~u'w'y/u? over the intermediate wave (c/u,=14). High intensity regions of
(=u'w") /u? and {(—u'w’)s/u? are denoted by the —0.5 contour with dotted
and dashed contour lines, respectively; high intensity regions of
(=u'w"yy/u? and (—u'w'),/u? are denoted by the 0.8 contour with dash-dot
and solid contour lines, respectively. The points F and H (both at x/\
=1.00, z/A=0.04) denote the detection positions for the QD-1 and QD-3
methods, respectively; the points G and I (both at x/A=0.46, z/A=0.05)
denote the detection positions for the QD-2 and QD-4 methods, respectively.

Figure 19 shows the distribution of the Reynolds stress
above the intermediate wave (c/u,.=14). The Q1 and Q3
events are responsible for the negative Reynolds stress above
the windward face of the wave, and the Q2 and Q4 events
are responsible for the positive Reynolds stress above the
leeward face of the wave. In Fig. 19, the high intensity re-
gions associated with Q1, Q2, Q3, and Q4 are indicated by
dotted, dash-dot, dashed, and solid contour lines, respec-
tively. Similar to the slow wave case, we apply the QD-m
method to perform conditional averaging to educe vortical
structures associated with each QD event. The detection po-
sitions F-I are marked in Fig. 19.

Figure 20(a) shows the conditionally averaged turbu-
lence structure associated with the Q1 events around the de-
tection position F. Note that there exist large spanwise struc-

(b)
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tures right above the wave crest and trough (see Fig. 16). The
existence of these vortex sheets reduces the visibility of the
quasistreamwise structures associated with the QDs. The re-
sult in Fig. 20(a) indicates that the coherent vortical struc-
tures associated with the Q1 events consist of a pair of vor-
tices. When observed along the +x-direction, the vortex on
the left side has a vertical vorticity component w,>0, and
the vortex on the right side has w,<0. They are almost par-
allel to each other. On both the (y,z) and (x,y)-planes cross-
ing the detection point, the negative peak of —u'w’ is located
between the two vortices. Unlike the velocity vectors in Fig.
10(a) for the slow wave case, the velocity vectors on the
(y,z)-plane do not indicate obvious rotation motion. The ve-
locity vectors on the (x,y)-plane clearly indicate a jet toward
the +x-direction between the two vortices. The flow patterns
on the (x,y)-plane and (y,z)-plane imply that the major fluid
motion associated with the Q1 events is in the horizontal
direction rather than in the vertical direction. This is because
over the slope downstream of the wave trough, the vortices
bend downward to have a significant vertical component,
which induces horizontal momentum flux.

To confirm the above results, we plot the isosurfaces of
the streamwise and spanwise vorticity components in Figs.
20(b) and 20(c), respectively. The isosurface of w, is located
above the wave crest and the isosurface of w, is located
above the windward face, both of which show a pair of
counter-rotating vortices. The result in Fig. 20 indicates that
the coherent vortical structures associated with the Q1 events
are along the streamwise direction above the wave crest, and

(c)

FIG. 20. Educed coherent structure by QD-1 conditional sampling with the detection position at location F in Fig. 19 and the threshold 8=2. In (a), the
vortical structures are represented by the isosurface of A,=-0.033. The structure with w,>0 are marked by the dark color; the structure with w <0 are
marked by the light color. The fluctuation velocity vectors (v’,w’) are shown on the (y,z)-plane crossing the detection point, and the fluctuation velocity
vectors (u',v’) are shown on the (x,y)-plane crossing the detection point. The contours of the normalized turbulent momentum flux —u’w’/u? are also shown
on both planes. In (b) and (c), the structures in the same educed flow field are identified by the isosurfaces of |w,/=0.15 and |w_|=0.5, respectively. The
structures with ;>0 are marked by the dark color; the structures with w;<0 are marked by the light color. For better view, in (b) the vortex sheets on the

surface are removed.
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FIG. 21. Phase-averaged velocity field above the intermediate wave (c/u.
=14). In (a), the vertical velocity contours are plotted. Dashed contour lines
represent negative values. The contour interval is 0.01. In (b), the local
streamwise profiles of (w) (solid line) and (—u’w’)/u’ (dash-dot line) at the
height z/A=0.04 are plotted.

bend downward to the vertical direction when extending to
the trough over the slope upstream of the wave crest [Fig.
4(b)].

We note that when the vortices bend downward, the
magnitude of the vertical vorticity w. [Fig. 20(c)] is larger
than that of the streamwise vorticity w, [Fig. 20(b)]. This is
consistent with the result in Fig. 17, which shows that the
vertical vorticity is significant above the windward face of
the wave. The counter-rotating motion associated with the
vertical vorticity induces a flux along the +x-direction. Due
to the local streamwise profile of the vertical velocity w(x)
above the windward face of the wave as shown in Fig. 21,

(b)
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fluid particles with ' >0 carry negative vertical velocity to a
downstream position where the negative vertical velocity is
even larger in magnitude, resulting in w’>0. Similarly, u’
<0 is associated with w’ <0. Therefore, a region of —u'w’
<0 is generated above the windward face of the wave.

Figure 22(a) shows the conditionally averaged turbu-
lence structure associated with the Q2 events around the de-
tection position G, which consists of a pair of counter-
rotating quasistreamwise vortices. The vortex pair induces an
upwelling motion and generates a high intensity region of
Reynolds stress. This is similar to the ejection motion in the
case of ¢/u,=2 [Fig. 10(a)].

Figure 22(b) shows the conditionally averaged vortical
structure associated with the Q3 events around the detection
position H. The vortical structure is smeared out by the span-
wise vortex sheet and is not clearly visible. We have also
plotted the isosurfaces of |w,|=0.15 and |w,|=0.5 and found
structure similar to the one in Figs. 20(b) and 20(c) (results
not shown here due to space limitation). Figure 22(c) shows
the conditionally averaged vortical structure associated with
the Q4 events around the detection position I. The result
clearly indicates a counter-rotating quasistreamwise vortex
pair similar to that in Fig. 22(a), except that the positions of
the positive and negative vortices are switched.

Similar to the discussion in Sec. III, the instantaneous
vortices often appear individually rather than in pair, and the
vortex pair shown in the plots of this subsection is an artifact
of the QD conditional averaging method. In Sec. IV C, we
investigate direct extraction of each individual vortical struc-
ture for conditional averaging.

FIG. 22. Educed coherent structures by the QD method with: (a) QD-2 detection at location G (Fig. 19); (b) QD-3 detection at location H (Fig. 19); and (c)
QD-4 detection at location I (Fig. 19). The detection criterion threshold is S=2. The vortical structures are represented by the isosurface of A\,=—-0.08. The
structures with w,>0 are marked by the dark color; the structures with w, <0 are marked by the light color. In (a), the contours of the normalized turbulent
momentum flux —u'w’/u? and the fluctuation velocity vectors (v’,w’) are shown on the (y,z)-plane crossing the detection point.
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FIG. 23. Ensemble-averaged quasistreamwise vortex with w,>0 from the
extracted samples for the case of intermediate wave (c/u,=14): (a) side
view and (b) top view.

(b)

C. Direct sampling of characteristic vortical
structures

In this subsection, we apply the direct sampling ap-
proach used in Sec. III C to the case of ¢/u,=14. Recall that
this approach requires the vortical structures to be isolated so
that their shapes can be checked. Direct observation of the
instantaneous flow field indicates that some quasistreamwise
vortices are connected to the spanwise vortex sheet above the
wave trough (see Fig. 16), which makes the extraction of
vortices difficult there. As a result, in this study we check
only the data points above the height of the vortex sheet. By
doing this, we lose the information on the upstream ends of
the vortices near the wave trough where they bend toward
the vertical direction. The interaction between the vortices
and the spanwise vortex sheet is beyond the scope of the
present study and will be a subject of our future research.

Figure 23 shows the ensemble-averaged quasistream-
wise vortices sampled by this direct sampling method. For
better visualization, we removed the spanwise vortex sheets
on the wave crest and trough when making the plot. Similar
to the case of ¢/u.=2, when observed along the +x-direction,
the vortex QSP inclines slightly to the +y-direction as shown
in Fig. 23(b), while the vortex QSN inclines slightly to the
—y-direction (not shown due to space limitation). The vorti-
ces are almost straight in the horizontal plane. We note that
the upstream end that has a significant vertical component is
smeared out during the averaging process because of the ter-
mination in sampling when the wave trough is approached
and because of the variation in the vertical bending for dif-
ferent vortices. The ensemble-averaged surface elevation in-
dicates that the quasistreamwise vortices are located above
the wave crest and the slope upstream of the crest. When
observed from the side, the vortices bend in the vertical
plane to follow the curvature of the wave surface. This
change in the primary direction is consistent with the result
in Figs. 18 and 20.

Direct sampling of quasistreamwise vortices indicate
that the vortices QSP and QSN in the case of c¢/u.=14 are
more likely to appear individually rather than in pair. This is
consistent with the case of ¢/u.=2. As shown in Sec. IV B,
the QD-m method captures features of the upstream and
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FIG. 24. History of the vortex evolution above the intermediate wave
(c/u,=14). The flow field is observed in the wave-following frame, in
which the vortical structures travel from right to left. The vortical structures
are identified by the isosurface of N\,=-1.

downstream ends of the quasistreamwise vortices on the up-
stream and downstream slopes of the wave crest, respec-
tively. The direct sampling method in this subsection, on the
other hand, provides information on the quasistreamwise
vortices above the wave crest. These two methods comple-
ment each other. The combined results provide a more com-
plete picture of the characteristics of the coherent vortical
structures.

D. Evolution of vortical structures
over the intermediate wave

In this subsection we discuss the evolution of vortical
structures over the intermediate wave. The same as in Sec.
III D, we first examine instantaneous vortex fields at succes-
sive time frames to illustrate the evolution; we then use the
vorticity dynamic equation to show the effects of vortex
stretching and turning in the vortex evolution process.

Figure 24 shows the history of the vortex evolution
above the intermediate wave (c/u,=14). We re-emphasize
that in the wave-following frame, the vortices near the wave
surface travel in the —x-direction in the cases of intermediate
and fast waves [Fig. 4(b)]. Taking the quasistreamwise vor-
tex A as an example, at *=11 367.0 [Fig. 24(a)], vortex A is
located above the wave trough with its upstream end reach-
ing above the wave crest. Around t*=11 372.4 [Fig. 24(b)],
when vortex A propagates over the leeward face of the wave,
it is stretched along the streamwise direction. When vortex A
propagates over the wave crest to above the slope upstream
of the crest, its upstream end turns downward and is
stretched in the vertical direction; meanwhile, its down-

Downloaded 29 Dec 2009 to 128.220.58.191. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



125106-17

Characteristics of coherent vortical structures

(e) ' x}k

T3

FIG. 25. Contours of vortex stretching and turning terms for the intermedi-
ate wave case (c/u,=14) normalized by (1%/v)?: (a) vortex stretching of w,,
Ti=(w,(du/dx))'?; (b) vortex turning from w, to w., ’Z?:(wx(&w/ ax))P; (c)
vortex stretching of w,, T3=(w (dw/3dz))*; (d) vortex turning from w, (0 ®,
by the strain field Sy, 73 |gin={®,S3;)*"; and (e) vortex turning from w, to
w, by the rotation field Oy, 73| owion={®,Q3;)*. The dashed contour lines
represent negative values.

stream end loses intensity over the crest without the support
of vortex stretching [Figs. 24(c)-24(e)]. As vortex A contin-
ues to propagate to above the next trough [Fig. 24(f)], it loses
its intensity and attenuates there.

The above results indicate that the vortex stretching and
turning in the (x,z)-plane play an important role in the evo-
lution of the quasistreamwise vortices above the intermediate
surface wave. We examine next the vorticity dynamic equa-
tions (11) and (12) and plot the terms 7!, 73, and 7; in Fig.
25. The further decomposed vortex turning terms ’fl’ |srain and
T3 |rotation LEQ. (13)] are also plotted for comparison.

Figure 25(a) shows the contours of the vortex stretching
term ’Z'} High intensity region of the streamwise stretching is
located above the leeward face of the wave. Recall that the
vortices propagate in the —x-direction in the vicinity of the
wave surface [Fig. 4(b)] and the flow velocity is faster above
the wave crest. When a streamwise vortex propagates over
the leeward face of the wave, its intensity increases due to
the vortex stretching along the streamwise direction. Above
the wave crest, this stretching ends and the vortex reaches its
maximum intensity.

Figure 25(b) shows the vortex turning term 7;. The peak
of 7? is located slightly upstream above the wave crest. As a
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streamwise vortex propagates to above the wave crest, its
upstream end turns counterclockwise so that the vortex has a
vertical component. As the vortex propagates further up-
stream to above the windward face of the wave, the vertical
part of the vortex is enhanced due to the vertical stretching
associated with the local gradient dw/dz [see, e.g., Fig.
21(a)]. This vertical stretching is clearly indicated by the
high intensity region of the term 73 of Eq. (12), plotted in
Fig. 25(c). Meanwhile, the streamwise part of the vortex at-
tenuates due to vortex compression and viscous dissipation.
As a result, the primary direction of the vortex changes from
the horizontal direction to the vertical direction. We note that
the vertical stretching region in Fig. 25(c) is consistent with
the high intensity region of F, in Fig. 18(a) and the location
of the |w,| isosurface in Fig. 20(c).

To further show the vortex turning, we plot in Figs.
25(d) and 25(e) the vortex turning terms associated with the
strain field S3; and the rotation field ()5, respectively. Since
the magnitude of dw/dx is much smaller than that of du/dz,
S5, and ), are close in magnitude but with opposite sign.
Therefore, T;']strain and Tﬂmtation have similar distributions
with opposite sign, and Tf is the summation of the two. We
note that although ’Z':]z’ and Tf |strain have different magnitudes,
their similar distributions (high intensity region above the
wave crest) indicate consistent descriptions of the vortex
turning over the wave crest.

The above results indicate that the evolution of the qua-
sistreamwise vortices above the intermediate wave is consis-
tent with the statistics of the vortex stretching and turning
terms in Egs. (11) and (12). Different from the slow wave
case, in which the vortex stretching and turning in the hori-
zontal plane are mainly responsible for the evolution of the
vortical structures, the intermediate and fast wave cases are
dominated by the vortex stretching and turning processes in
the vertical plane. This indicates the significant effect of the
wave motion as the wave age increases (i.e., as the wave
travels faster).

Finally, we note that Tokuda™ applied the Gortler insta-
bility analysis to gentle winds over water waves, which cor-
responds to the cases of flows over intermediate and fast
waves in our work. His instability analysis predicted the for-
mation of counter-rotating quasistreamwise Gortler vortices
above the wave crest. The Gortler instability is a type of
centrifugal instability. According to the Rayleigh circulation
criterion,54’55 for the intermediate and fast water wave cases,
the flow is unstable and stable above the wave crest and
trough, respectively, which coincides with the enhancement
and attenuation of the quasistreamwise vortices observed in
this study. Other than that work, due to the difficulty of the
physical problem associated with the moving wave bound-
ary, there is a lack of study for the vortical structures above
the intermediate and fast waves in literature. Our DNS re-
sults show that the vortical structures possess unique features
such as the downward bending and suggest further study of
this problem.

Downloaded 29 Dec 2009 to 128.220.58.191. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



125106-18 D. Yang and L. Shen

0.5

(a)

n 66— ——— ]
7—]
—7 §
6
5 2

- 7
0 " " " " 1 n 0 r 1 "
0.5 1
X/

z/h

025 05 075 i 125 025 05 075 i .25
x/A x/\

FIG. 26. Turbulent transport of scalar above the slow wave (¢/u.=2). In (a),
the contours of phase-averaged scalar fluctuation rms values, s'™, are plot-
ted. In (b) and (c), the contours of scalar fluctuations, s’, associated with
conditionally averaged vortical structures A and E in Fig. 11 are plotted,
respectively. The positions of the vortices are denoted by the thick solid
lines. In (b) and (c), the x-z planes are the ones crossing the centerlines of
the vortices. All the contour values are normalized by s.. The dashed con-
tour lines represent negative values. The contour interval is 1.

V. RELATIONSHIP OF COHERENT VORTICAL
STRUCTURES TO TURBULENT TRANSPORT

The coherent vortical structures play an important role in
turbulent transport. In previous sections we illustrate their
correlation with the Reynolds stress in the turbulent flow
over the wave. In this section we discuss transport of a pas-
sive scalar in the turbulent flow, and form and friction drag at
the wave surface.

A. Scalar transport

To study the effect of coherent vortical structures on
scalar transport, we simulate the transport of a passive scalar
over the wave as a canonical problem. The concentration of
the scalar, s, is governed by the advection-diffusion equation

as as Fs

—tuT—=D,———. (14)
Here, D,, is the molecular diffusivity of the scalar and is
related to the kinematic viscosity by D,,= v/Sc, with Sc as
the Schmidt number. Dirichlet boundary conditions are ap-
plied for s at the top and bottom boundaries with s=1 at z

=H and s=—1 at z=z,. Using the velocity solved in the
DNS, Eq. (14) is simulated using the same numerical method
as introduced in Sec. II B. A Schmidt number Sc=2 is used.
We use this canonical problem to investigate the fundamen-
tals of scalar transport in the turbulent flow in a way similar
to Kim and Moin,”® Shen er al.,”’ Lakehal et al,”® and
Kasagi et al”’

Figure 26(a) shows the phase-averaged contours of the
scalar concentration fluctuation root-mean-square (rms)
value, s'™® for the slow wave case (c¢/u.=2). The contour
value is normalized by a reference friction value s., which is
defined as s.=D,, &s/&z|surface/u*.60 The result indicates that
the high intensity region of scalar fluctuation starts from the
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FIG. 27. Turbulent transport of scalar above the intermediate wave (c/u,
=14). In (a), the contours of phase-averaged scalar fluctuation rms values,
s'™s " are plotted. In (b), the contours of scalar fluctuations, s’, associated
with conditionally averaged vortical structures in Fig. 20 are plotted. The
contour values are normalized by s.. The contour interval is 1.

wave crest, extends over the wave trough, and ends above
the windward face of the successive downstream wave crest.
Figures 26(b) and 26(c) show the contours of the fluctuations
of scalar concentration, s’, in the conditionally averaged flow
field associated with vortical structures A and E in Fig. 11,
respectively. The ejection associated with structure A trans-
ports low scalar concentration up from the wave surface,
resulting in a negative fluctuation of s; on the contrary, the
sweep associated with structure E brings high scalar concen-
tration down toward the wave surface, resulting in a positive
fluctuation of s. As shown in Figs. 26(b) and 26(c), the scalar
fluctuation associated with vortical structures A and E has
similar distribution as that in Fig. 26(a), because these vorti-
cal structures are responsible for the scalar mixing above the
trough of the slow wave.

Similar to what we found in Sec. IV, the fast wave
(c/u,.=25) case shares considerable similarities with the in-
termediate wave (c/u,.=14) case in terms of scalar transport.
Here only the latter are shown due to space limitation. Figure
27(a) shows the phase-averaged contours of s'™* for the in-
termediate wave case. The high intensity region of scalar
fluctuation is located above the wave trough and the wind-
ward face of the wave crest. Figure 27(b) shows the contours
of s" in the conditionally averaged flow field associated with
the vortical structure shown in Fig. 20. The similarity of the
scalar fluctuation distributions between Figs. 27(a) and 27(b)
indicates that the bent quasistreamwise vortices are respon-
sible for the strong scalar mixing above the windward face of
the intermediate wave. As shown earlier in Fig. 20, the vor-
tical structure has a significant vertical component there. Be-
cause ds/dx<<0 above the windward face, the positive
streamwise velocity fluctuation induced by the vertical vor-
ticity results in a positive scalar fluctuation there.

B. Momentum transport at the wave surface

The wind-wave momentum exchange is through the
form and friction drag at the wave surface. For slow waves,
the form drag is dominant."”*° In general, the pressure is
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FIG. 28. Distribution of surface pressure associated with the reversed horse-
shoe vortical structure E in the conditionally averaged flow field of Fig.
10(b). The pressure values are normalized by pu?. (a) Contours of surface
pressure fluctuation p’. (b) Surface pressure profiles at different spanwise
locations: — — —, y/A=0; ——, y/A\=0.3. In (a), the position of the vortical
structure E is indicated by the thick solid line; the dashed contour lines
represent negative values; the contour interval is 0.4. In (b), the wave sur-
face elevation is indicated by the solid line.

high on the windward face and low on the leeward face,
which results in a net momentum transport from wind turbu-
lence to water wave (see, e.g., Ref. 20). We find that this
pressure distribution can be largely affected by the vortical
structures.

Figure 28 shows the surface pressure distribution in the
conditionally averaged flow field associated with the re-
versed horseshoe vortical structure E shown in Fig. 11 for the
slow wave case (c¢/u,=2). The vertical motions induced by
structure E cause negative and positive surface pressure fluc-
tuations upstream and downstream of it, respectively [Fig.
28(a)]. As indicated in Fig. 28(b), the surface pressure fluc-
tuations associated with the vortical structure E enhance the
high pressure on the windward face and reduce the low pres-
sure on the leeward face of the water wave, and therefore
increase the form drag and the momentum flux from the
turbulent flow to the wave.

The dimensionless form drag per unit area is quantified
as

1 (™ p dz,
sz—f indx.
NJo puy dx

It is found that F' » associated with structure E is 0.59, which
is 26% larger than the averaged value 0.47 over the entire
wave surface. Occupying 56% of the surface wave profiles,
the pressure distribution associated with structure E supports
about 70% of the total form drag.

The effect of the quasistreamwise vortices is found
mainly on the surface friction drag. Similar to the flat wall
boundary layer case,” the vertical motions induced by the
quasistreamwise vortices greatly enhance the vertical mo-
mentum transport4 and thus the friction drag. For wind over
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FIG. 29. Conditionally averaged surface shear stress contours associated
with the vortical structure in (a) Fig. 20 and (b) Fig. 22(c). The shear stress
value is normalized by pu?. The contour interval is 0.3. The dashed contour
lines represent negative values. The position of the vortical structure is
indicated by the thick solid line. The bottom profile indicates the elevation
of the surface wave.

waves, the friction drag becomes important compared to the
form drag as the wave age increases (because the pressure
distribution becomes more symmetric about the wave crest
and thus the form drag reduces signiﬁcantly).m_m’19

Here, we show the intermediate wave case (c/u,=14) as
an example. Figure 29(a) shows the surface shear stress dis-
tribution in the conditionally averaged flow field associated
with the bent quasistreamwise vortical structure in Fig. 20
(Ql-related). The positive streamwise velocity fluctuation as-
sociated with the vertical component of the vortex pair en-
hances the streamwise velocity in between and causes 10%-—
15% increase in the surface shear stress on the windward
face between x/A=0.6 and 1.1.

Figure 29(b) shows the surface shear stress distribution
in the conditionally averaged flow field associated with the
quasistreamwise vortical structure in Fig. 22(c) (Q4-related)
for the intermediate wave case. The downwelling motion as-
sociated with the horizontal vortex pair sweeps the high
speed fluid toward the wave surface and causes 10%—-20%
increase in the shear stress on the leeward face.
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VI. CONCLUSIONS

In this study, we perform a DNS based study on the
coherent vortices in turbulence over progressive surface
waves. To elucidate the characteristics of vortices observed
in instantaneous flow field, we first use statistics conditioned
on the magnitude of vorticity components to investigate the
occurrence of vortical structures with respect to the wave
phase and to quantify the primary direction of the vortices.
We then use QD-based conditional averaging to study the
relationship between vortical structures and turbulent mo-
mentum transport above the wave surface. We also use a
geometry-based direct sampling method to directly extract
characteristic vortices from the turbulence field. With the
conditional averaging methods, we are able to obtain useful
information on the geometry of the coherent vortical struc-
tures, and to illustrate the relationship of vortex features to
the waveform and wave motion. Finally, we investigate the
evolution of vortices to reveal their generation, transforma-
tion, and attenuation processes with respect to the surface
wave propagation.

Our study shows that in turbulent flows over progressive
waves, there exist unique coherent vortical structures that are
highly dependent on the wave motion. In the case of slow
surface wave (c/u,=2), it is found that quasistreamwise vor-
tices and reversed horseshoe vortices are the characteristic
vortical structures. The quasistreamwise vortices are domi-
nant and have high concentration above the windward face
of the wave; they are associated with ejection events. The
reversed horseshoe vortices, associated with the sweep
events, are concentrated above the wave trough. In the wave-
following frame, these vortical structures propagate toward
the downstream direction (with respect to the waveform).
The results show that over the wave trough, the reversed
horseshoe vortices associated with sweeps are transformed
into to quasistreamwise vortices; the quasistreamwise vorti-
ces then extend and propagate over the wave crest and at-
tenuate before the next trough. Vortex stretching and turning
are found to play an essential role in the vortex transforma-
tion and evolution process.

Vortical structures over intermediate (¢/u.=14) and fast
(c/u,=25) waves are substantially different from those in the
slow wave case. Because of the relatively large wave phase
speed, in the wave-following frame, vortices travel in the
upstream direction (with respect to the waveform). Quasis-
treamwise vortices are found to be the characteristic vortical
structure. Over the leeward face of the wave surface, the
quasistreamwise vortices extend along the streamwise direc-
tion and are associated with the positive Reynolds stress
there. Above the wave crest, the vortices are substantially
strengthened. As the quasistreamwise vortices propagate
over the windward face, their upstream ends have an appre-
ciable downward bending. Due to the vortex bending, the
vertical component of vorticity induces streamwise velocity
around the vortices, which together with the streamwise gra-
dients of vertical velocity due to the wave motion generate
negative Reynolds stress over the windward face of the wave
surface. As the wave trough is approached, the bent quasis-
treamwise vortices interact with the spanwise vortex sheet
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there and attenuate. The locations for the intensification and
attenuation of the quasistreamwise vortices are consistent
with the unstable and stable regions of the Gortler instability
discussed in literature.

The unique vortical structures over progressive waves
reported in this study are found to play an essential role in
turbulent transport processes. In this paper, besides the Rey-
nolds stress, we also illustrate the correlation of coherent
vortices with scalar mixing and form and friction drag at the
wave surface. It is found that the scalar fluctuation magni-
tude is increased in the regions where the vortices are
present. The vertical motion induced by the vortices en-
hances the transport of the scalar away from and toward the
wave surface. For the slow wave case, the reversed horse-
shoe vortices greatly enhance the pressure on the windward
face of the wave, resulting in increased form drag and thus
increased momentum input to the wave field. For the inter-
mediate and fast wave cases, the quasistreamwise vortices
are found to increase the friction drag.

The results presented in this paper used simulation over
a surface with prescribed wave motion. This approach is
computationally efficient and has been validated by our ad-
ditional simulations of dynamically evolving waves using
air-water coupled methods. The comparison among different
simulation approaches indicates that the essential features of
the coherent vortical structures are captured. Nevertheless, it
should be pointed out that this study only serves as a first
step toward the understanding of vortex dynamics in flows
over progressive waves. There are additional factors need to
be considered in future study, e.g., the Reynolds number ef-
fect, which affects the classification of slow, intermediate,
and fast waves.'>'*?! For this reason, the boundaries and
transitions among different wave age cases are not discussed
in this paper because the Reynolds number is limited due to
the DNS approach used here. To have higher Reynolds num-
bers, large-eddy simulation will be used. The surface rough-
ness and wave breaking effects should also be considered.
Although the surface variation is examined in our LSM
simulation, we note that the ripples appearing in spilling
breakers may affect the flow structure considerably. To re-
solve these small-scale structures, more advanced numerical
methods using adaptive mesh refinement are required. For
plunging breakers and airflow separation, our preliminary
results®® show that spanwise vortical structures appear in the
separation zone, which are much more complex than the
ones reported in this paper. Further study on these complex
cases is needed.
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APPENDIX A: METHODS OF DNS-SNOW COUPLED
SIMULATION OF WIND-WAVE INTERACTION

In the DNS-SNOW coupled approach, the motion of the
turbulent flow above the surface wave is obtained by the
DNS described in Sec. II B. The nonlinear evolution of the
wave is captured by the SNOW method*” based on the HOS
method.*' The HOS directly simulates evolution of the sur-
face elevation z,, and the surface potential ®°, which is de-
fined as the surface value of the velocity potential ®.% With
a perturbation series of ® with respect to the wave steepness
to the order of M and Taylor series expansions about the
mean water level z=0,

M
> D" (x,y,2.0),

m=1

D(x,y,z,1) =
(A1)

zw)e gt
(92( 7=0

)

M M-m
D(x,y,1) = E 2

and an eigenfunction expansion of each ®" with N modes,

N
D (x,y,2,1) = 2, OV, (x,,2),

n=1

z=0, (A2)

the kinematic and dynamic free-surface boundary conditions
are written as

9z,
; =- Vth . th)s + (1 + thw . thw)
M M-m ){/ N
x| X > D)
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+1
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1 (Zw){) (m)
+ 5(1 + V2 Viz) X | 2 > > D)

m=1 €{=0 ’nl

C+1

X F‘Pn(x,y,z)

(A4)

Here, V, =9/ dx+d/dy, Dy is the wave dissipation, p,, is the
atmospheric pressure applied at the wave surface represent-
ing the wind forcing. Equations (A3) and (A4) are advanced
in time with a fourth-order Runge—Kutta scheme. Periodic
boundary conditions are applied in the horizontal directions.
A Fourier series based pseudospectral method is used for the
spatial discretization. The water wave can be either in deep
or shallow water condition, which is included in the eigen-
function V,. Complete review of the scheme, validation, and
application of HOS is provided in Refs. 64 and 65.

In DNS-SNOW, the turbulence and wave simulations are
dynamically coupled through a fractional step scheme with
two-way feedback. At each time step, the HOS simulation
provides the surface geometry z,, and velocity i,, as a Di-
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richlet boundary condition for the turbulence field, and the
DNS advances in time and obtains pressure distribution p,
on the wave surface; the HOS simulation then uses the sur-
face pressure p, as the wind forcing in the dynamic free-
surface boundary condition (A4) to advance in time. After
the above two substeps of alternating advancing, the entire
turbulence-and-wave field advances to the next time step.
Numerical details and validations of this DNS-SNOW
coupled approach can be found in Refs. 42 and 43.

APPENDIX B: LSM FOR AIR-WATER COUPLED
MOTION

In the LSM simulation, the air and water together are
treated as one fluid system with varying density and viscos-
ity. As described by Sussman et al.,66 the air-water interface
is implicitly represented by a level-set function ¢, which
represents the signed distance from the interface. The evolu-
tion of ¢ is governed by d¢/dt+ii-Vp=0. As ¢ evolves in
time, the location where ¢=0 denotes the interface. For the
region where ¢ # 0, a reinitialization procedure of Russo and
Smereka®’ is used to preserve the distance property of ¢.66

Following Sussman et al.,66 we write the density and
viscosity of the fluid as

PS((ZS) =pat (pw - pa)Hs(¢) and
(B1)

M) H (D),

where H,(¢) is a smoothed Heaviside function, and the sub-
scripts @ and w denote air and water, respectively. The in-
compressible Navier—Stokes equations for the air-water two-
phase flow system can then be written as

(D) = pg + (e, —

pe(cﬁ)(% +i-V ﬁ) ==Vp+V-[2u,(4)D]

- ok($) () V o+ p(P)g,
(B2)

V.i=0. (B3)

Here, D is the viscous stress tensor, o is the surface tension,
k(¢) is the curvature of the interface, which satisfies ()
=V-
which satisfies 5,(¢)=dH,/d¢. In solving Egs. (B2) and
(B3), for spatial discretization, we use a second-order finite-
difference scheme on a clustered staggered grid. The time
integration is realized through a second-order Runge—Kutta
method, with the pressure obtained by a projection method.
Numerical details and validations of the current LSM ap-
proach can be found in Ref. 44.

APPENDIX C: DIRECT SAMPLING OF VORTICES

To extract vortical structures in the flow field, we use
two tag functions M(x,y,z) and M,(x,y,z) to mark the sta-
tus of data in the sampling procedure. Here, the subscript s
stands for “sampling” and i stands for “interior.” During the
subsequent searching and sampling process, M (x",y’,z’)
=1 indicates that the point (x',y’,z’) has already been iden-
tified to be associated with a vortical structure sampled ear-
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()

FIG. 30. Samples of the (a) and (b) quasistreamwise, and (c) reversed horse-
shoe vortices above the slow wave (¢/u,=2). The structures with w,>0 are
marked by the dark color; the structures with w, <0 are marked by the light
color.

lier; M (x",y’,z')=1 indicates that the point (x',y’,z’) is
inside the vortical structure that is currently under investiga-
tion.

We first calculate the N\, value in an instantaneous flow
field. At the beginning of the search procedure, we initialize
the tag functions M (x,y,z) and M;(x,y,z) to be zero every-
where. Then we find the first interior point of the vortical

z

B
(@)

=

(b)

FIG. 31. Samples of the quasistreamwise vortices above the intermediate
wave (c/u,=14).
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structure by searching for a local maximum of |w,| that also
satisfies A\, <-p. Here, @ is a threshold, which is set to be
1.5 in the present study. The search is performed in the range
of 10<((z—z,)/\)* <40, where quasistreamwise vortices
occur as shown in Fig. 8. Once such an interior point (re-
ferred to as point O) is found, set M;(xy,y0,z0)=1 at this
point, and then check all the neighboring grid points of point
O. If a neighboring point P satisfies M (xp,yp,zp)=0 and
No(xp,yp,zp) <—0, it is considered to be an interior point of
the current vortical structure. We set M;(xp,yp,zp)=1 and
move on to check the neighboring points of point P. This
search is repeated until no new interior point can be found.
After the above search, all the grid points belonging to the
vortical structure that contains the original point O have been
marked by M;=1. The geometry of the current vortical struc-
ture is checked based on the spatial distribution of the points
belonging to it. If the vortical structure is mainly in the
streamwise direction, we take it as a sample of quasistream-
wise vortex. We then set M =1 for all the interior points of
the current sample, reinitialize M, to be zero everywhere, and
repeat the above search procedure for the next sample until
no new sample can be found in the current instantaneous
flow field.

By following the above procedure, we obtain samples of
quasistreamwise vortices in an instantaneous flow field. Fig-
ures 30(a) and 30(b) show two typical quasistreamwise vor-
tices above the slow wave (¢/u,=2). The result indicates that
this method is able to extract the target vortical structures
from the complex background flow field (Fig. 5). It is also
found that different instantaneous vortices usually have dif-
ferent inclination angles, and their downstream ends may
point to different directions. Figure 31 shows two typical
samples of the quasistreamwise vortices above the interme-
diate wave (c¢/u.=14).

For the reversed horseshoe vortices, the direct sampling
method can also be used to obtain samples for conditional
averaging. Compared to the quasistreamwise case, two modi-
fications are needed in the procedure: (i) search the local
maximum of |w;| instead of |w,| to find the first interior point
of the vortical structure; and (ii) check if the geometry is of
reversed horseshoe shape. Figure 30(c) shows a typical ex-
ample of the reversed horseshoe vortex over the slow wave.
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