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We use direct numerical simulation of stress-driven turbulent Couette flows over
waving surfaces to study turbulence in the vicinity of water waves. Mechanistic study
is performed through systematic investigation of different wavy surface conditions
including plane progressive Airy and Stokes waves with and without wind-induced
surface drift, as well as stationary wavy walls and vertically waving walls for
comparison. Two different wave steepness values ak = 0.1 and 0.25 are considered,
where a is the wave amplitude and k is the wavenumber. For effects of wave age,
defined as the ratio between the wave phase speed c and the turbulence friction
velocity u∗, we consider three values, namely c/u∗ = 2, 14 and 25, corresponding
to slow, intermediate and fast waves, respectively. Detailed analysis of turbulence
structure and statistics shows their dependence on the above-mentioned parameters.
Our result agrees with previous measurement and simulation results and reveals
many new features unreported in the literature. Over progressive waves, although no
apparent flow separation is found in mean flow, considerable intermittent separations
in instantaneous flow are detected in slow waves with large steepness. The near-surface
coherent vortical structures are examined. We propose two conceptual vortex structure
models: quasi-streamwise and reversed horseshoe vortices for slow waves and bent
quasi-streamwise vortices for intermediate and fast waves. Detailed examination of
Reynolds stress with quadrant analysis, turbulent kinetic energy (TKE) and TKE
budget with a focus on production shows large variation with wave phase; analysis
shows that the variation is highly dependent on wave age and wave nonlinearity.
Comparison between Airy waves and Stokes waves indicates that although the
nonlinearity of surface water waves is a high-order effect compared with the wave
age and wave steepness, it still makes an appreciable difference to the turbulence
structure. The effect of wave nonlinearity on surface pressure distribution causes
substantial difference in the wave growth rate. Wind-induced surface drift can cause a
phase shift in the downstream direction and a reduction in turbulence intensity; this
effect is appreciable for slow waves but negligible for intermediate and fast waves. In
addition to providing detailed information on the turbulence field in the vicinity of
wave surfaces, the results obtained in this study suggest the importance of including
wave dynamics in the study of wind–wave interaction.

1. Introduction
Turbulent flow over a surface undergoing waving motion is of interest in many

applications. Examples include wind–wave interaction at the sea surface (Miles 1957;

† Email address for correspondence: lianshen@jhu.edu



132 D. Yang and L. Shen

Lighthill 1962), drag reduction with a waving boundary undergoing fish-like motions
(Taneda & Tomonari 1974; Triantafyllou, Triantafyllou & Yue 2000) and, in the limit
of vanishing waving velocity, atmospheric flow over hills (Hunt, Leibovich & Richards
1988) and oceanic flow over sandbars (Zedler & Street 2001; Tseng & Ferziger 2004).
Turbulent flow over a waving boundary differs substantially from that over a flat
wall. In addition to the complex geometry associated with the wavy boundary (e.g.
for wind over hills), the presence of the boundary waving motion (e.g. for wind
over progressive waves and fish swimming) affects the flow field significantly. Wave
boundary geometry and motion increase the complexity of the flow and the research
associated with it.

Among the above applications, wind over waves is the focus of the current paper.
The problem of wind–wave interaction is a challenging research topic of great
importance. Prediction of the evolution of oceanic wave fields under wind forcing
and modelling of atmosphere–ocean coupled systems requires a quantitative and
fundamental understanding of the mechanism of wind–wave interaction. However,
our current understanding of this problem is quite limited because of the complexity
of the physics.

An early theoretical attempt by Jeffreys (1925) to explain the wind wave generation
mechanism assumed that the air flow separation in the lee of the wave crest increases
the form drag of the air and causes the wave to grow. This explanation, called the
separated sheltering mechanism, was subsequently found to be inconsistent with the
measurements of wind pressure over waves. In the 1950s, Phillips (1957) and Miles
(1957) developed two wind wave growth theories. Phillips considered the generation of
water waves by turbulent pressure fluctuations in the wind field. His theory employed
a resonant mechanism and gave rise to a linear growth rate that is only effective for
short waves at the initial stage of wind wave generation. Miles, on the other hand,
applied a linear stability analysis to the shear flow over an infinitesimal water wave.
He assumed the air flow to be inviscid, and turbulence was only considered to provide
a mean shear profile. His result showed that the growth rate is determined by the
flow around the ‘critical layer’, where the mean air flow velocity matches the phase
velocity of the wave. Miles’s mechanism predicts an exponential growth of water
waves. Lighthill (1962) interpreted Miles’s mechanism of wind input to surface waves
as a ‘vortex force’ around the critical layer. Miles’s critical-layer mechanism does not
adequately describe wind over slow waves where the critical layer is very close to the
wave surface or fast waves where the critical layer is distant from the wave surface
and plays no significant role.

In recent years, the rapid distortion theory (RDT) has been successfully applied to
the problem of wind–wave interaction. Belcher & Hunt (1993) considered the rapid
distortion mechanism and applied a four-layer asymptotic model to the problem of
shear flow over slowly moving waves. Cohen & Belcher (1999) later extended this
work to flow over fast-moving waves. The non-separated sheltering mechanism from
these studies complements Miles’s critical-layer mechanism and provides a theoretical
explanation for the growth of slow waves and the damping of fast waves under wind
forcing.

In addition to the above-mentioned studies, there are also other important
theoretical analyses on wind–wave interaction. For example, Fabrikant (1976) and
Janssen (1982) developed a quasi-linear wind wave generation theory by tracking
the wind profile evolution and applying Miles’s theory at each particular time.
This quasi-linear theory improved the prediction of wind wave growth. Makin,
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Kudryavtsev & Mastenbroek (1995) developed a parametric-description-based wind-
over-waves coupling (WOWC) theory that was later successfully applied to show the
effects of various sea surface phenomena (e.g. wave breaking and long–short wave
interaction) on wind–wave interaction (e.g. Makin & Kudryavtsev 2002; Makin et al.
2007).

In the past few decades, many field measurements have been performed in oceans
and lakes to investigate the interaction between wind turbulence and surface water
waves (see, among many others, Snyder et al. 1981; Hristov, Miller & Friehe 2003;
Donelan et al. 2006). These measurements provide valuable information on the flow
field, including mean velocity profile and air pressure distribution, that can be used
to evaluate the energy input from wind to water waves. However, the detailed flow
structure in the vicinity of the wave surface is difficult to obtain because of the
complex environment in the field. To make accurate measurement, the probe needs to
be close enough to the water surface (below the wave crests) but meanwhile needs to
stay dry. Moreover, the wave-induced pressure and turbulence is small compared with
the already-existing atmospheric turbulence. All these make the field measurement
difficult. In a recent series of carefully designed wave-follower field measurements
(Donelan et al. 2005, 2006; Babanin et al. 2007), detailed and extensive near-surface
pressure data for strong wind over steep waves were obtained. These data provide
valuable information for the validation of the current numerical result. Quantitative
comparison is given in the present paper. Besides field measurements, more controlled
laboratory experiments provide detailed information on the turbulence field. However,
many of the laboratory experiments are for turbulence over stationary wavy
boundaries (e.g. Hudson, Dykhno & Hanratty 1996; Nakagawa & Hanratty 2001;
Günther & von Rohr 2003; Kruse, Günther & von Rohr 2003), and those for
turbulence over water waves (e.g. Stewart 1970; Banner & Melville 1976; Hsu, Hsu &
Street 1981; Hsu et al. 1982; Mastenbroek 1996; Donelan et al. 2004; Makin et al.
2007; Veron, Saxena & Misra 2007; Reul, Branger & Giovanangeli 2008; Shaikh &
Siddiqui 2008; Donelan & Plant 2009) are more challenging because of the moving
boundary.

In addition to theoretical and experimental study, numerical simulation has been
a useful research tool. For example, Gent & Taylor (1976) applied a mixing-length
model in their Reynolds-averaged Navier–Stokes (RANS) simulation of turbulence
over water waves and showed that a varying surface roughness may significantly
increase the energy input from turbulence to surface waves. Al-Zanaidi & Hui (1984)
used a two-equation closure model and found that the rate of wave growth can be
significantly different depending on if the turbulent flow is transitional, smooth or
rough.

On the basis of the RDT, Belcher & Hunt (1993, 1998) showed that in the outer
region of the flow, the turbulent eddies are advected too rapidly to transport significant
momentum, so that the effect of shear stress perturbation on the mean flow calculation
is negligible there. They pointed out that the erroneous application of the mixing-
length model over the whole flow region in earlier RANS studies incorrectly models
the stress gradients in the outer region, which affects the accuracy of the form drag
calculation and results in inaccurate prediction of wave growth rate.

An important improvement in RANS simulation was made by Mastenbroek et al.
(1996; see also Mastenbroek 1996), who obtained model and measurement results con-
sistent with the RDT prediction and showed the importance of using the second-order
Reynolds stress closure model, namely the Launder–Reece–Rodi (LRR) model. The
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second-order model was later used in several other RANS simulations (e.g. Li, Xu &
Taylor 2000; Meirink & Makin 2000).

With the above-mentioned progress in theoretical, experimental and numerical
studies in the past five decades, the understanding of the physics of wind wave
growth has been improved significantly. But there still exists about 50 % difference
between the values of wave growth rate measured in the laboratories and field and
the ones predicted by theories and models, especially for slow waves (cf. Mastenbroek
1996; Belcher & Hunt 1998). Recently, Peirson & Garcia (2008) showed that the
discrepancy between model prediction and measurement can be reduced significantly
if a wave-coherent tangential stress contribution is included in the calculation of
growth rate.

Beyond RANS simulation, large-eddy simulation (LES) can resolve large-scale flow
motions with the effects of small-scale motions represented by subgrid-scale models.
Being able to directly address the unsteady flow structures that are inherent in the non-
equilibrium turbulence field over the wavy boundary, LES appears promising. Gong,
Taylor & Dörnbrack (1996), Henn & Sykes (1999), Zedler & Street (2001), Tseng &
Ferziger (2004), Wan, Porté-Agel & Stoll (2007) and Sullivan et al. (2008) performed
LES for turbulent flows over wavy surfaces. If a no-slip boundary condition is used
on the wavy surface, the Reynolds number cannot be too large because the wall
boundary layer needs to be resolved. For high Reynolds numbers to be considered, a
wall-layer model is needed.

The accuracy of RANS simulation and LES is directly affected by the applicability
of turbulence models in the complex problem of wind–wave interaction. With the
continuous increase in computer power, direct numerical simulation (DNS) (cf.
Moin & Mahesh 1998) has become feasible for simulating turbulence over wavy
surfaces. At relatively low Reynolds numbers and without turbulence modelling, DNS
provides detailed turbulence flow field data. Choi, Moin & Kim (1992), Krettenauer &
Schumann (1992), Maass & Schumann (1994), De Angelis, Lombardi & Banerjee
(1997), Cherukat et al. (1998), Sullivan, McWilliams & Moeng (2000), Shen et al.
(2003) and Kihara et al. (2007) performed DNS for turbulence over various wavy
boundaries. Results from these DNS provide useful information on different aspects
of the dynamics of turbulence near a wavy boundary.

In the current study, we use DNS to perform a comprehensive study of turbulence
over waving surfaces. The structures, statistics and dynamics of the flow are highly
dependent on a wide range of factors including wave age, wave amplitude, wave
nonlinearity and wind-induced surface drift. In the current work, we investigate the
effects of the above-mentioned processes systematically in order to obtain a complete
picture of the physical processes. Some of these processes were ignored in previous
studies. For example, most previous DNS studies on turbulence over water waves
considered only simple water wave boundary conditions with wave steepness small and
wave nonlinearity ignored. In order to study the effect of surface wave nonlinearity
on turbulence, we consider a Stokes wave with large steepness ak =0.25. Comparison
between Stokes and Airy waves allows us to quantify the influence of wave nonlinearity
on the turbulence structures and dynamics, especially on the pressure-induced wave
growth rate. We also consider the effect of wind-induced surface drift on turbulence,
which is expected to be appreciable in slow waves, since the drift velocity may be
comparable to the wave orbital velocity.

The extensive data on the three-dimensional, instantaneous flow field obtained
in our DNS enable us to perform a comprehensive analysis of the structures and
statistics of the turbulence in the vicinity of the wave surface. In the present paper, we
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Figure 1. Sketch of a turbulent Couette flow over a wavy boundary. The flow is driven by
a constant shear stress τ on the top boundary. The surface wave has a wavelength λ and an
amplitude a. The wave propagates in the x-direction with a phase speed c.

present detailed results on turbulence statistics, including Reynolds stress, quadrant
analysis and turbulent kinetic energy (TKE) budget with a focus on production. The
instantaneous flow field is examined, with particular attention paid to the occurrence
of intermittent flow separation. We also obtain well-resolved wave-coherent vortical
structures. On the basis of the characteristics of these vortices and their dependence
on surface wave motion, we propose a conceptual model for near-surface coherent
vortical structures that explains the relation between Reynolds stress and coherent
turbulent motions.

Besides the illustration of the fine turbulence structure, it is important for the
DNS to capture the key quantifications of the wind–wave interaction problem. In the
current study, the wave phase dependence and the vertical distribution of the pressure
field are analysed and compared with the literature, and their variations with respect
to wave steepness, wave age, wave nonlinearity and surface drift are studied. The
wave form drag and growth rate are quantified, and their dependence on the wave
conditions is investigated systematically. Extensive comparison and validation with
existing field and lab measurements, numerical simulations and theoretical analyses
are performed, and satisfying results are obtained.

This paper is organized as follows. The problem definition and numerical method
are discussed in § 2. Section 3 shows the phase-averaged flow field. In § 4, the
instantaneous flow structure is studied. Section 5 presents statistical turbulence
quantities, including Reynolds stress, quadrant analysis and TKE budget with a
focus on production. In § 6, the dependence of the pressure field and the consequent
wave growth rate on the wave boundary condition is studied. Finally, a discussion
and conclusions are provided in § 7.

2. Problem definition and numerical method
2.1. Flow configuration and mathematical formulation

We consider the three-dimensional turbulent Couette flow over a wavy boundary as
shown in figure 1. In this canonical problem, the flow is driven by a constant shear
stress τ at the top boundary. The shear stress is related to the turbulence friction
velocity by u∗ =

√
τ/ρ, where ρ is the fluid density. The Cartesian frame is fixed
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Figure 2. Illustration of coordinate transformation. The height of the physical domain H is
decomposed into an average height H and a wave-induced variation H ′. The irregular physical
domain in the (x, y, z, t) space is transformed to a rectangular computational domain in the
(ξ, ψ, ζ, τ ) space by an algebraic mapping. Here only the mapping in the (x, z)-plane is shown.
In the y-direction, the grid is uniform and is not plotted.

in space, with x, y and z being the streamwise, spanwise and vertical coordinates,
respectively. Here a is the wave amplitude; λ is the wavelength; k = 2π/λ is the
wavenumber; and c is the wave phase speed. The surface wave motion is prescribed.
The details of the wavy boundary condition are discussed in § 2.4. We note that
although the prescribed wave is two-dimensional, which corresponds to the case
of being uniform in the transverse direction, the turbulent flow above the wave
is simulated in the three-dimensional frame. Therefore, the velocity obtained from
our simulation has three components, u, v and w, which are functions of (x, y, z).
For the phase-averaged statistics shown in the current paper, the results reduce to
two-dimensional and are presented as functions of (x, z).

The turbulent flow motions are described by the incompressible Navier–Stokes
equations

ρ

(
∂ui

∂t
+

∂uiuj

∂xj

)
= − ∂p

∂xi

+ μ
∂2ui

∂xj∂xj

, (2.1)

∂ui

∂xi

= 0. (2.2)

Here ui(i =1, 2, 3) = (u, v, w); p is the pressure; and μ is the dynamic viscosity.

2.2. Algebraic mapping

A major difficulty in the simulation of flow over a wavy boundary is that the physical
domain is non-rectangular and cannot be easily discretized by a regular Cartesian
grid system. In our simulation, we use a boundary-fitted grid system that enables the
direct simulation of the turbulent flow down to the wave surface with the boundary
layer resolved. As shown in figure 2, the irregular wave-following physical space
(x, y, z, t) is transformed to a rectangular computational space (ξ, ψ, ζ, τ ) with the
following algebraic mapping:

τ = t, ξ = x, ψ = y, ζ =
z + H ′

H ′ + H
. (2.3)
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Here the height of the physical domain H is decomposed into an average height H

and a wave-induced variation H ′(x, y, t). The origin of the z-axis in the physical space
is set at the mean surface level, and the top boundary is at z = H . This algebraic
mapping, though seemingly simple in its form, is found to be highly efficient in
our simulations of turbulent flows over nonlinear wave boundaries, e.g. high-order
representation of Stokes waves.

Note that H ′ is a function of x, y and t . By applying the chain rule to partial
differentiations, we obtain the following transformation of derivatives:

∂

∂t
=

∂

∂τ
+

H ′
t − ζH ′

t

H ′ + H

∂

∂ζ
,

∂

∂x
=

∂

∂ξ
+

H ′
x − ζH ′

x

H ′ + H

∂

∂ζ
,

∂

∂y
=

∂

∂ψ
+

H ′
y − ζH ′

y

H ′ + H

∂

∂ζ
,

∂

∂z
=

1

H ′ + H

∂

∂ζ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

By substituting operators (2.4) into (2.1) and (2.2), we obtain fully nonlinear governing
equations in the computational space:

ρ

(
∂u

∂τ
+

H ′
t − ζH ′

t

H ′ + H

∂u

∂ζ
+

∂(uu)

∂ξ
+

H ′
x − ζH ′

x

H ′ + H

∂(uu)

∂ζ
+

∂(uv)

∂ψ
+

H ′
y − ζH ′

y

H ′ + H

∂(uv)

∂ζ

+
1

H ′ + H

∂(uw)

∂ζ

)
= −∂p

∂ξ
−H ′

x − ζH ′
x

H ′ + H

∂p

∂ζ
+ μ∇2u, (2.5)

ρ

(
∂v

∂τ
+

H ′
t − ζH ′

t

H ′ + H

∂v

∂ζ
+

∂(vu)

∂ξ
+

H ′
x − ζH ′

x

H ′ + H

∂(vu)

∂ζ
+

∂(vv)

∂ψ
+

H ′
y − ζH ′

y

H ′ + H

∂(vv)

∂ζ

+
1

H ′ + H

∂(vw)

∂ζ

)
= − ∂p

∂ψ
−

H ′
y − ζH ′

y

H ′ + H

∂p

∂ζ
+ μ∇2v, (2.6)

ρ

(
∂w

∂τ
+

H ′
t − ζH ′

t

H ′ + H

∂w

∂ζ
+

∂(wu)

∂ξ
+

H ′
x − ζH ′

x

H ′ + H

∂(wu)

∂ζ
+

∂(wv)

∂ψ
+

H ′
y − ζH ′

y

H ′ + H

∂(wv)

∂ζ

+
1

H ′ + H

∂(ww)

∂ζ

)
= − 1

H ′ + H

∂p

∂ζ
+ μ∇2w, (2.7)

∂u

∂ξ
+

H ′
x − ζH ′

x

H ′ + H

∂u

∂ζ
+

∂v

∂ψ
+

H ′
y − ζH ′

y

H ′ + H

∂v

∂ζ
+

1

H ′ + H

∂w

∂ζ
= 0, (2.8)

where the Laplacian operator is decomposed into ∇2 = ∇2
ξψ + ∇2

ζ as

∇2
ξψ =

∂2

∂ξ 2
+

∂2

∂ψ2
+ 2

H ′
x − ζH ′

x

H ′ + H

∂2

∂ξ∂ζ
+ 2

H ′
y − ζH ′

y

H ′ + H

∂2

∂ψ∂ζ
, (2.9)

∇2
ζ =

(
(H ′

xx + H ′
yy)(1 − ζ )

H ′ + H
− 2

(H ′2
x + H ′2

y )(1 − ζ )

(H ′ + H )2

)
∂

∂ζ

+
1 + (H ′

x − ζH ′
x)

2 + (H ′
y − ζH ′

y)
2

(H ′ + H )2
∂2

∂ζ 2
. (2.10)
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2.3. Numerical scheme

For spatial discretization, we use a Fourier-series-based pseudo-spectral method in the
horizontal directions. In the vertical direction, we use a second-order finite-difference
scheme on a staggered grid (Harlow & Welch 1965; Shen et al. 2003). We use an evenly
distributed grid with 128 points in both the streamwise and spanwise directions. In the
vertical direction, we use 129 grid points that are clustered towards the bottom and
top boundaries. The relatively small number of grid points compared with modern
turbulence simulation in the rectangular domain is necessitated by the complexity
associated with the wavy geometry and the extra terms and iteration in the nonlinear
treatment, which substantially increases the computational cost.

The Navier–Stokes equations (2.1) and (2.2) are advanced in time by a fractional-
step method of Kim & Moin (1985), which is modified here for this nonlinear
problem:

ρ

(
ûi − un

i

�t
+

1

2

((
H ′

t − ζH ′
t

H ′ + H

)n+1
∂ûi

∂ζ
+

(
H ′

t − ζH ′
t

H ′ + H

)n
∂un

i

∂ζ

))

=
1

2

(
3Cn

i − Cn−1
i

)
+ μ∇2

ζ

(ûi + un
i )

2
, (2.11)

ρ

(
un+1

i − ûi

�t

)
= − ∂φ

∂xi

n+1

, (2.12)

with

∂ui

∂xi

n+1

= 0. (2.13)

Here the superscript represents the time step, and the hat represents the intermediate
step of the fractional-step method. In (2.11), a Crank–Nicolson scheme is used for
the convective terms (in time derivatives) and the viscous terms that contain only the
derivatives with respect to ζ . A second-order Adams–Bashforth scheme is used for
the convective terms and the viscous terms that contain the derivatives with respect
to ξ and ψ . The term Ci is expressed as

Ci = ρ

(
−∂(uiu)

∂ξ
− H ′

x − ζH ′
x

H ′ + H

∂(uiu)

∂ζ
− ∂(uiv)

∂ψ

−
H ′

y − ζH ′
y

H ′ + H

∂(uiv)

∂ζ
− 1

H ′ + H

∂(uiw)

∂ζ

)
+ μ∇2

ξψui. (2.14)

Here the operators ∇2
ξψ and ∇2

ζ are given in (2.9) and (2.10), respectively. With this
decomposition for the viscous terms, the nonlinear equation (2.11) for the velocity
at the intermediate step, ûi , can be solved directly without iteration. On the other
hand, the semi-implicit scheme is still used for the dominant vertical derivatives in
the viscous terms, which is necessary to fully resolve the turbulent boundary layer
with small grid size in the vertical direction and a relatively large time step. With
the above-mentioned features, this modified fractional-step method is found to be
computationally efficient in our simulation.

The scalar φ in (2.12), called the pseudo-pressure, is related to the pressure by the
equation

pn+1/2 = φn+1 +
μ�t

2
∇2φn+1 (2.15)



Turbulence over waving surfaces 139

Boundary type

Stationary wavy wall

Vertical waving wall

Airy wave

Stokes wave

ak

0.1
0.25
0.1
0.25
0.01
0.025
0.05
0.1
0.15
0.2
0.25
0.25

c/u∗

0
0

2 14 25
2 14 25
2
2
2
2 14 25
2
2
2 14 25
2 14 25

Re = Uλ/ν

9491
8181

9208 9689 9943
8454 9632 11 036
9535
9687
9772
9208 9566 9953
8922
8445
8501 9576 10 518
8058 9755 11 008

Table 1. Parameters for wavy boundary conditions.

and is obtained by solving the Poisson equation

∂

∂xi

(
∂φ

∂xi

n+1)
= − ρ

�t

∂ûi

∂xi

, (2.16)

which is obtained by applying the divergence operator to (2.12) and then substituting
(2.13) into it. It is noted that after the algebraic mapping, the Laplacian operators in
(2.16) become nonlinear. With the pseudo-spectral method in the horizontal directions,
these equations need to be solved iteratively. The nonlinear form of (2.16) is rewritten
as

∂2φ

∂ξ 2

m+1

+
∂2φ

∂ψ2

m+1

+
1

H
2

∂2φ

∂ζ 2

m+1

=
ρ

�t

∂ûi

∂xi

+
1

H
2

∂2φ

∂ζ 2

m

−
1 + (H ′

x − ζH ′
x)

2 + (H ′
y − ζH ′

y)
2

(H ′ + H )2
∂2φ

∂ζ 2

m

− 2
H ′

x − ζH ′
x

H ′ + H

∂2φ

∂ξ∂ζ

m

− 2
H ′

y − ζH ′
y

H ′ + H

∂2φm

∂ψ∂ζ
−

(
(H ′

xx + H ′
yy)(1 − ζ )

H ′ + H
− 2

(H ′2
x + H ′2

y )(1 − ζ )

(H ′ + H )2

)
∂φ

∂ζ

m

.

(2.17)

Here the superscripts m and m + 1 represent the previous and current iteration steps,
respectively. A modified Newton’s method is used to accelerate the convergence of
the iteration (Shen et al. 2003). We found that for the simulations presented in the
current paper, the residual error |φm+1 − φm| is reduced to less than 10−10 within six
iterations (typically two to four iterations are sufficient in our simulation).

2.4. Simulation parameters and boundary conditions

In our simulation, the Reynolds numbers based on the wavelength λ and the mean
velocity U at the top boundary, Re ≡ Uλ/ν, with ν = μ/ρ, are given in table 1. The
computational domain size in the present work is 4λ (streamwise) × 3λ (spanwise) ×
2λ (vertical). Periodic boundary conditions are used in the streamwise and spanwise
directions. By checking the two point correlation, we have confirmed that the domain
size is sufficiently large. With the resolution (Nx, Ny, Nz) = (128, 128, 129), we have
uniform grid sizes in the two horizontal directions, �ξ+ = 8.84 and �ψ+ = 6.63, and
vertical grid sizes �ζ+ = 0.42 near the top and bottom boundaries and �ζ+ = 8.45 in
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the middle of the channel. Here and hereafter, the superscript ‘+’ denotes the velocity
and length values normalized by wall variables u∗ and ν/u∗, respectively. (On the
basis of u∗ and λ, the Reynolds number is Re∗ = u∗λ/ν ≈ 283, which is about 10–40 %
higher than the previous DNS studies by Sullivan et al. 2000, Kihara et al. 2007 and
Lin et al. 2008, because of the increase in computer power; the grid resolutions are
comparable.)

We consider four types of wavy boundary conditions in the present study: stationary
wavy walls, vertically waving walls, Airy waves and Stokes waves. They are prescribed
as the Dirichlet conditions at the wave surface (denoted by the subscript ‘s ’) for the
turbulent flow according to the following formulations.
(i) Stationary wavy wall:

H ′ = −ηs = −a sin kx, (2.18)

(us, vs, ws) = (0, 0, 0). (2.19)

(ii) Vertically waving wall:

H ′ = −ηs = −a sin k(x − ct), (2.20)

(us, vs, ws) = (0, 0, −akc cosk(x − ct)). (2.21)

(iii) Airy wave:

H ′ = −ηs = −a sin k(x − ct), (2.22)

(us, vs, ws) = (akc sink(x − ct), 0, −akc cosk(x − ct)). (2.23)

(iv) Stokes wave: the exact Stokes solution (Schwartz 1974) is used as a fully nonlinear
water wave boundary condition. Following Dommermuth & Yue (1987), we directly
solve the nonlinear equations associated with the mapping function in Schwartz (1974,
(2.6)) by using Newton iteration.

Between Airy and Stokes waves, although the difference caused by the nonlinearity
appears to be of secondary importance compared with the waveform itself (i.e. O(ak)2

versus O(ak); for ak = 0.25, the maximum relative difference is 12.1 %, 21.2 % and
7.2 % for surface elevation, streamwise velocity and vertical velocity, respectively), for
some of the turbulence statistics, the difference is found to be appreciable. This wave
nonlinearity effect is discussed in the later sections of the present paper.

In addition to the theoretical water wave boundary conditions in (iii) and (iv)
above, we also consider the effect of wind-induced surface drift. Following Phillips &
Banner (1974), the distribution of wind drift velocity q along the wave surface is
written as

q = c − us −
√

(c − us)2 − q0(2c − q0). (2.24)

Here c is the wave phase speed; us is the streamwise surface orbital velocity of the
wave (by Airy or Stokes wave solutions); and q0 is the mean wind-induced surface
drift velocity (its value can be obtained by measurement). In the current paper, we
choose q0 = 0.55u∗ by compiling several existing experimental results (see e.g. Wu
1973; Phillips & Banner 1974). Equation (2.24) provides a surface drift current in the
wind blowing direction with the maximum at the wave crest and the minimum at the
wave trough.

In the present study, we consider two different wave steepnesses, namely ak = 0.1
and 0.25. The effect of wave phase speed is quantified by the wave age c/u∗, defined as
the ratio between the wave phase speed c and the turbulence friction velocity u∗. The
inverse wave age, u∗/c, indicates the level of wind forcing: for a given phase speed,



Turbulence over waving surfaces 141

c/u∗

2
14
25

q0/u∗

0.55
0.55
0.55

q0/c

0.275
0.039
0.022

q0/c(2 − q0/c)

0.474
0.077
0.044

Table 2. Estimation of the right-hand side of inequality (2.25).

larger u∗/c indicates stronger wind forcing. In the present study, we choose three
different wave ages, namely c/u∗ =2, 14 and 25. Following Belcher & Hunt (1998), we
use the wave age c/u∗ = 2 to represent slow (young) waves, c/u∗ = 14 for intermediate
waves and c/u∗ = 25 for fast (mature) waves. A list of wave boundary parameters is
given in table 1. Note that the Airy wave is the linearized water wave solution and
requires small wave steepness. In the current study, in addition to ak = 0.1, we also
consider ak = 0.25 for the Airy wave case in order to make direct comparison with
the cases of a stationary wavy wall and a vertically waving wall. In order to represent
the nonlinear water wave with ak = 0.25, the Stokes wave solution has been used
as we mentioned earlier. For an Airy wave with c/u∗ = 2, five additional values of
wave steepness, ak =0.01, 0.025, 0.05, 0.15 and 0.2, are also considered to study the
steepness effect on wind–wave interaction.

When the wind-induced surface drift effect is considered, one important question is
whether wave breaking happens or not. As given by Banner & Phillips (1974), with
the surface drift, the criterion that wave breaking does not happen can be described
as

(1 − ak)2 >
q0

c

(
2 − q0

c

)
. (2.25)

The left-hand side of (2.25) has the values of 0.81 and 0.5625 for ak = 0.1 and 0.25,
respectively. The right-hand side of (2.25) is listed in table 2. As shown, for all the
water wave cases considered in the current paper, the values of (1 − ak)2 are larger
than the values of (2 − q0/c) q0/c. This ensures that the wind-induced surface drift
effect we considered here does not cause wave breaking.

2.5. Definition of statistical quantities

In our DNS, we start the simulation with a three-dimensional velocity field prescribed
as the summation of a two-dimensional mean flow and three-dimensional random
perturbations as seeds for the turbulence. The turbulent Couette flow is then developed
dynamically because of flow instability. After the turbulence has fully developed, we
start to study flow statistics. In the DNS, no turbulence model is used (cf. (2.1)),
and the exact velocity components (u, v, w) and pressure are obtained as functions
of (x, y, z, t). For turbulence statistics, in order to study the interaction of turbulence
with surface waves, the phase-average approach (Hussain & Reynolds 1970) is used
to quantify the modulation of statistical properties of turbulence by the underlying
wave motion. Since the reference frame in our simulation is fixed in space and the
surface wave propagates in the x-direction with a phase speed c, we define the phase
average of a function f (x(i), y(j ), z(k), t(n)) as

〈f 〉0(x, z) ≡ 1

Nt × Ny

Nt∑
n=1

Ny∑
j=1

f (x(i) + c t(n), y(j ), z(k), t(n)), (2.26)
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where the indices i, j , k, n are for discrete grid points in x, y, z and t , respectively,
and Ny and Nt are the total numbers of sample points in y and t , respectively. With
this approach, the function f is averaged over the spanwise direction and also over
its period in time. This phase average is then further averaged over all the waves in
the streamwise direction of the computational domain:

〈f 〉(x, z) ≡ 1

Nw

Nw−1∑
m=0

〈f 〉0(x + mλ, z). (2.27)

Here Nw is the number of waves in the domain along the streamwise direction
(Nw = 4 in our case) and λ is the wavelength. The fluctuation is then defined as
f ′(x, y, z, t) = f (x, y, z, t)−〈f 〉(x −ct, z). The phase-averaged quantity can be further
decomposed into 〈f 〉(x, z) = [f ](z)+fw(x, z), where [f ] and fw are the plane average
and wave-induced variation of f , respectively.

By applying the above-given analysis, we decompose the instantaneous three-
dimensional turbulence flow field u(x, y, z, t) into

u(x, y, z, t) = 〈u〉(x, z) + u′(x, y, z, t) = [u](z) + uw(x, z) + u′(x, y, z, t). (2.28)

The velocity fluctuation u′ is then used in the following sections to calculate turbulence
quantities such as Reynolds stress and TKE.

With the above-given definition of phase average, only one wavelength in the
streamwise direction is necessary when statistics of turbulence are plotted. However,
for a better visualization of the turbulence structures, we plot two wavelengths instead
in most of the figures of the present paper.

In the present study, all the computations were carried out for about 13 500 viscous
time units (tu2

∗/ν). Statistics are obtained from 160 instantaneous flow field data
points with an approximate time interval of 27 viscous time units.

To confirm that the sample number for statistics in the current paper is sufficient for
convergence, we repeat the calculation of statistical quantities with different sampling
spaces. It is found that reducing the sample number to 80 results in a very small
difference in the statistics compared with the values obtained with 160 samples. For
example, for all the cases, the change in the momentum flux is less than 4 %, and
the change in the wave form drag is less than 3 %. We also repeat the calculation
by increasing the sample number to 320. The comparison with the results using 160
samples shows less than 1 % differences in the statistical quantities. The above-given
validation indicates that the sample number of 160 used in the analysis is adequate
for the statistical quantities reported in the present paper.

3. Mean flow structure
3.1. Mean streamline pattern

Figure 3 shows the phase-averaged streamline pattern of (〈u〉 − c, 〈w〉) over various
wavy boundaries with steepness ak = 0.25. In the frame travelling with wave, far from
the surface the mean flow is in the direction of wave propagation, while near the wave
surface the mean flow reverses and is in the direction opposite to wave propagation.
Therefore, there exists a critical layer where the mean velocity 〈u〉 matches the wave
phase speed c, i.e. 〈u〉 − c =0. The critical layer is plotted as the dash-dot-dotted lines
in figure 3. The critical layer is surrounded by closed streamlines, known as the cat’s
eyes (Lighthill 1962).
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Figure 3. Phase-averaged streamline pattern over various wavy boundaries with steepness
ak = 0.25, including the following: Airy waves with wave ages (a) c/u∗ = 2, (b) c/u∗ = 14 and
(c) c/u∗ = 25; (d ) Airy wave with surface drift and c/u∗ = 2; (e) Stokes wave with c/u∗ =14;
and (f ) vertically waving wall with c/u∗ = 14. The velocity used for calculating streamlines is
in the wave-following frame, i.e. (〈u〉 − c, 〈w〉) is used in the plots. The dash-dot-dotted lines
represent the critical layer where 〈u〉 − c = 0.

Figure 3(a–c) shows the phase-averaged streamline pattern over Airy waves with
various wave ages. As we can see, for the case of c/u∗ =2, the critical layer lies very
close to the wave surface; for the case of c/u∗ =14, the critical layer lies some distance
above the wave surface, and the mean flow reverses below the critical layer; for the
case of c/u∗ = 25, the critical layer is located far away from the wave surface and
is beyond the domain plotted (but still within the computational domain), resulting
in negligible dynamic effect on the wave. Figure 3(d ) shows the streamline pattern
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over Airy waves of c/u∗ = 2 with the wind-induced surface drift present. Comparison
between figures 3(a) and 3(d ) shows that for the slow-wave case, the centre of the
cat’s eyes shifts downstream from (x, z)/λ= (0.689, 0.015) to (x, z)/λ= (0.741, 0.008)
because of the surface drift. The influence of surface drift on the streamline pattern
is small for the intermediate- and fast-wave cases, which are not shown here because
of space limitation.

Figure 3(e) shows the streamline pattern for the case of Stokes waves with c/u∗ = 14.
By comparing with figure 3(b), we find that at x/λ= 0.5 the Stokes wave case has a
critical height of about z/λ= 0.018 that is smaller than the value of z/λ= 0.021 for
the Airy wave case. Note that a Stokes wave has larger streamwise velocity at the crest
and smaller streamwise velocity at the trough compared with the Airy wave with the
same (ak, c/u∗). Therefore, in the frame travelling with the wave, the turbulence over
a Stokes wave has smaller reversed mean flow near the wave surface compared with
the Airy wave case. This results in a lower height of the critical layer for the Stokes
wave case. For the wave age of c/u∗ =2, the nonlinearity effect is not obvious, since
the magnitude of the wave orbital velocity is small. For the wave age of c/u∗ =25, the
nonlinearity effect on the streamline pattern is also small. Because the critical layer
is located beyond the domain we plotted, the Stokes wave case has a similar parallel
streamline pattern as the Airy wave case except that the streamline curvatures are
slightly larger near the crest and slightly smaller near the trough. Because of space
limitation, the cases of c/u∗ = 2 and 25 are not shown in the present paper.

The streamline pattern over the vertically waving wall is found to be similar to the
Airy wave case, except for the case of c/u∗ = 14 (see figure 3f ) in that the critical
layer has about the same height as in the Stokes wave case, while it is lower than
that in the Airy wave case.

The streamline patterns over moving boundaries with steepness ak =0.1 are similar
to those with ak = 0.25 but have lower critical layers and smaller vertical extension
of the cat’s eyes, due to the smaller wave surface orbital velocities. Because of space
limitation, these streamline patterns are not shown in the present paper.

3.2. Mean velocity

Flow separation over a wavy boundary is an important phenomenon. For turbulence
over a stationary wavy boundary, boundary layer separation happens on the lee of
the crest for large wave steepness. Figure 4(a,b) shows the phase-averaged streamwise
velocity 〈u〉 in turbulence over stationary wavy surfaces with ak =0.1 and 0.25,
respectively. For the case of ak = 0.1, 〈u〉 is positive everywhere, and thus there
is no mean flow separation. For the case of ak = 0.25, there exists a reverse-flow
region above the wave trough, indicating the occurrence of mean flow separation
(because 〈u〉 =0 at the stationary wavy wall). The mean flow separates around
x = 0.47λ and reattaches around x = 0.88λ (wave crest is at x = 0.25λ and trough is
at x = 0.75λ). Figure 4(c) shows the contours of 〈u〉 for a vertically waving boundary
with (ak, c/u∗) = (0.25, 2). Since in the frame fixed in space 〈u〉 is zero everywhere on
the surface, the small region of negative 〈u〉 indicates the occurrence of mean flow
separation. The mean flow separates at around x = 0.65λ and reattaches at x =0.81λ.

For the turbulence over a moving wave surface, the mean flow separation is more
likely to happen for small c/u∗ (corresponding to strong wind forcing) compared
with large c/u∗. Therefore, here we focus on moving wave surface cases with
c/u∗ = 2. Figure 4(d, e) shows 〈u〉 contours over Airy waves and Stokes waves with
(ak, c/u∗) = (0.25, 2). Because of the negative surface orbital velocity above the wave
trough, the negative 〈u〉 region there cannot be regarded as the sign of flow separation.
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Figure 4. The phase-averaged streamwise velocity contours over different wavy boundaries.
(a) Stationary wavy wall with ak =0.1; (b) stationary wavy wall with ak =0.25; (c) vertically
waving wall with (ak, c/u∗) = (0.25, 2); (d ) Airy wave with (ak, c/u∗) = (0.25, 2); (e) Stokes wave
with (ak, c/u∗) = (0.25, 2); and (f ) Airy wave with surface drift and with (ak, c/u∗) = (0.25, 2).
The dashed contour lines represent negative values. In (c)–(f ), the surface waves propagate in
the +x-direction.

Figure 4(f ) shows the Airy wave case of (ak, c/u∗) = (0.25, 2) with the wind-induced
surface drift. With the surface drift in the x-direction, the size of the negative 〈u〉
region is reduced.

Precise detection and detailed measurement in laboratory and field of air flow
separation over the wave surface is challenging. Banner & Melville (1976) showed the
occurrence of air flow separation over a breaking wave (which produces a stagnation
point) on the leeward side of the crest. Banner (1990) and Babanin et al. (2007)
measured the effect of wave breaking on air pressure distribution and showed the
influence on wave growth rate. Donelan et al. (2006) showed separation over a
slow steep wave at the crest (this full separation has the reattachment well up the
windward side of the preceding wave crest), which is caused by insufficient centripetal
acceleration from pressure gradients. By using a digital particle image velocimetry
technique, Reul, Branger & Giovanangeli (1999) and Veron et al. (2007) were able
to elucidate the separation flow pattern and shear stress variation over breaking
waves. Reul et al. (2008) measured the detailed structure of air flow separation over
breaking water waves with various wind forcing levels and wave breaking intensities.
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Their measurement captured the streamline pattern of the separation bubble over
micro-breaking, gentle-spilling breaking, spilling breaking and plunging breaking
waves. They also showed unsteady patch-like vorticity, which exists both in the shear
layer at the edge of the separation bubble and in the region near the reattachment
point.

Effect of flow separation on the wind–wave interaction dynamics is clearly shown
in the numerical simulation by Maat & Makin (1992) and in the WOWC theory
prediction by Makin & Kudryavtsev (2002). In the present work, wave breaking
is not represented by the prescribed surface wave motion; nor is the wave crest
sharp enough. Therefore, we do not expect to capture these large-scale separations
in our simulation. This is shown in the mean streamline pattern plotted in figure 3.
As pointed out by Gent & Taylor (1977), the occurrence of separation requires the
streamlines intersecting with the wave surface. In figure 3, we do not see evidence for
the occurrence of mean flow separation for the water wave cases considered in the
current paper.

4. Instantaneous flow field
4.1. Instantaneous flow separation

Although no obvious mean flow separation is found for c/u∗ = 2 in our DNS results,
there may still exist instantaneous flow separations that occur intermittently both in
space and in time. To check this, we first calculate the surface shear stress to narrow
down the search region for instantaneous separation. The surface shear stress is given
as

τs = t xΣnT . (4.1)

Here the normal and tangential direction vectors of the wave surface are

n =
{H ′

x, 0, 1}√
H ′

x
2 + 1

,

t x =
{1, 0, −H ′

x}√
H ′

x
2 + 1

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

respectively, and the stress tensor is

Σij = −pδij + μ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (4.3)

Figure 5 shows the contours of instantaneous surface shear stress above the Stokes
wave with (ak, c/u∗) = (0.25, 2). The dashed contour lines indicate negative surface
shear stress. It is found that upwind of the wave troughs, large negative surface shear
stress occurs intermittently. For a Stokes wave with ak = 0.25, the negative surface
shear stress region occupies about 18.2 % of the total surface area.

As pointed out by Gent & Taylor (1977), a negative shear stress on a moving surface
does not necessarily indicate flow separation. Separation occurs when the streamline
leaves the surface. The large negative surface shear stress region shown in figure 5
suggests possible locations for such events. From our instantaneous three-dimensional
DNS data, we examine the velocity field in detail. The results can be well represented
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Figure 5. (a) The contours of the instantaneous surface stress on a Stokes wave with ak = 0.25
and c/u∗ = 2. The dashed contour lines represent negative values. (b) Instantaneous surface
wave elevation. The surface wave propagates in the +x-direction.

by the velocity of the turbulence relative to the surface wave motion:

ur (x, y, z, t) = u(x, y, z, t) − us(x, y, t),

wr (x, y, z, t) = w(x, y, z, t) − ws(x, y, t).

}
(4.4)

Here (u, w) are the velocity components for the instantaneous turbulence field and
(us, ws) are the velocities of surface wave motion. Note that the turbulent velocities
at (x, y, z) are subtracted by the wave motion at the same horizontal position (x, y).
Therefore, in the near-wall region, the vector (ur, wr ) indicates the relative motion of
turbulent fluid to the surface particles of the water wave. Figure 6 shows the vectors of
relative velocities (ur, wr ) in the (x, z)-plane with y/λ= 2.25 at the same instantaneous
time as in figure 5. The vertical length is rescaled for better visualization. Here the
surface points A and B indicate the same locations as in figure 5. We found that
the fluid from upstream and downstream converges around point A, and the velocity
vectors point away from the surface above point A. This indicates the occurrence of
instantaneous flow separation from the wave surface around point A. Around point
B, the fluid upstream and downstream diverges, and the velocity vectors point towards
the surface. This indicates the reattachment of the separated flow. We note that when
the intermittent flow separation occurs, the local variation of instantaneous streamline
and shear stress is quite pronounced. We calculated the positive and negative values
of the instantaneous surface shear stress over the entire wave surface, which are
denoted as τ+

s and τ−
s , respectively. For their maximum values, we found that the

ratio |τ−
s |max/|τ+

s |max is O(1). This is in contrast with the ratio of the phase-averaged
values, which was found to be two orders of magnitude smaller in our study (results
not plotted here).
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Figure 6. Vectors of instantaneous relative velocity (ur, wr ) = (u(x, z) − us(x), w(x, z) − ws(x))
in the (x, z)-plane of y/λ= 2.25 of figure 5. Here (u,w) are the instantaneous streamwise and
vertical velocities of turbulence and (us, ws) are the surface velocity of the wave. The points
A and B correspond to the points A and B in figure 5(a), respectively. The surface wave
propagates in the +x-direction.

As mentioned earlier, Donelan et al. (2006) showed the occurrence of flow separation
over slow steep waves. It should be pointed out that their measurements were
performed at Lake George in Australia. Being constrained by the depth of the
lake, the water waves in their measurements belong to the transitional water depth
condition. Therefore, the nonlinearity of the surface wave in their measurements is
stronger than that of the deep-water waves in the present study.

As a consequence of the weaker wave nonlinearity in the present simulation, the
intermittent separation shown here corresponds to conditions milder than the ones
discussed in Donelan et al. (2006) and Babanin et al. (2007). The size and intensity
of the instantaneous separation shown in figures 5 and 6 is not as marked as the
full separation shown in Donelan et al. (2006). Donelan et al. (2006) showed that for
their slow-wave case LG8 that has U10/c = 7.2, full separation happens over waves of
ak > 0.25, which are about 28 % of all the waves in their record.

The significance of the full separation phenomenon has been clearly revealed by
Donelan et al. (2006) with their wave-follower pressure data. They showed that
when full separation happens, the air pressure variation becomes smaller than the
corresponding non-separation case; meanwhile, the phase shift of the pressure field
relative to the waveform increases. These two effects work in the opposite way in
affecting the pressure-induced wave form drag. Their combined effect may result in
positive or negative influence on the wind–wave momentum transfer. The condition
of full separation goes beyond the capability of the current DNS approach, which
uses a prescribed waveform that is still relatively mild (e.g. not sharp and asymmetric
enough at the wave crest). To study the air flow separation over surface waves
with more realistic waveforms, we are currently extending our turbulence simulation
capability by two approaches. In the first approach, the air turbulence simulation is
coupled with a water turbulence simulation with both tangential and normal stresses
balanced on the deformable wave interface. In the second approach, the air turbulence
simulation is coupled with a water wave simulation by a high-order spectral method
(Dommermuth & Yue 1987). For both of these two coupled simulations, the water
wave evolves dynamically under the influence of air turbulence. These provide us
with the capability of studying the air flow separation over a more realistic wind
wave surface. However, this goes beyond the scope of the current work. Much more
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work needs to be done in this area for us to have a better understanding of the flow
separation over surface waves, and the results will be reported in the future.

4.2. Instantaneous vortical structures

Previous studies of the turbulence boundary layer of a flat wall have indicated the
existence and the dynamic importance of coherent vortical structures (e.g. Kim 1983;
Moin & Kim 1985; Robinson 1991; Adrian, Meinhart & Tomkins 2000). On the basis
of experimental and numerical observations, many conceptual models for near-wall
coherent turbulent structures have been proposed, among which the quasi-streamwise
vortex model (e.g. Jeong et al. 1997) and the horseshoe vortex model (e.g. Zhou et al.
1999) are the most widely studied. For turbulence over wavy surfaces, however, there
is a lack of studies on coherent vortical structures. The few existing studies are all for
stationary wavy walls (e.g. De Angelis et al. 1997; Calhoun & Street 2001; Nakagawa,
Na & Hanratty 2003; Tseng & Ferziger 2004).

For the study of coherent vortical structures in turbulence, many identification
methods have been developed for the visualization of vortices (see the review by
Chakraborty, Balachandar & Adrian 2005). Without losing generality, we use the λ2

method (Jeong & Hussain 1995) for vortex identification in the current paper. We
calculate the eigenvalues of the tensor S2 + Ω2, where S and Ω are respectively the
symmetric and antisymmetric parts of the velocity gradient tensor ∇u. Let λ2 be the
second largest eigenvalue, the region in which λ2 < 0 defines the interior of a vortex
core.

In figure 7 we plot the instantaneous coherent vortical structures in the near-surface
region for slow (c/u∗ = 2), intermediate (c/u∗ = 14) and fast (c/u∗ = 25) Airy waves
with steepness ak = 0.25. The vortical structures are represented by the isosurface of
λ2 = −1. It is apparent that the dominant vortical structures near the wave surface
are stretched in the streamwise direction for all cases. By comparing figures 7(a) and
7(c), we note that features of the coherent vortices strongly depend on the wave age
c/u∗.

In the case of c/u∗ = 2 (figure 7a), the coherent vortical structures lie above the
wave surface. Most of the vortices are along the streamwise direction, while some
others have the shape of a horseshoe with a spanwise component. We characterize
the vortical structures by two categories. The first is quasi-streamwise vortices, e.g.
vortices 1–3 in figure 7(a). We found that the quasi-streamwise vortical structures start
from the windward side of a wave crest and then extend over the crest. The second
type of vortical structure is the horseshoe vortices, e.g. vortices 4–6. It is interesting
that these horseshoe vortices have their heads upstream and legs downstream. This
is the opposite of the typical horseshoe vortices near a flat wall, of which the heads
are downstream of the legs (see e.g. Adrian 2007). We found that the heads of these
vortices are usually located above the wave trough.

In the case of c/u∗ =14 (figure 7b), the coherent vortical structures are almost
all aligned in the streamwise direction. The spatial frequency of the vortices is less
than that in the c/u∗ =2 case. The largest vortex has the streamwise dimension of
about λ, longer than that in the case of c/u∗ = 2. In addition to these isolated vortical
structures, underneath them there are long spanwise vortex sheets lying right above
the wave crests and troughs. Our study shows that these vortex sheets have vorticity
vectors pointing in the spanwise direction. The spanwise vorticity ωy is negative
above the crest and positive above the trough. This sign distribution suggests that the
spanwise vortex sheet is generated by the strong periodic surface wave motion.
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Figure 7. Snapshot of near-surface coherent vortical structures in instantaneous turbulence
field over Airy waves with steepness ak = 0.25 and wave ages (a) c/u∗ = 2, (b) c/u∗ = 14
and (c) c/u∗ = 25. The vortical structures are represented by the isosurface of λ2 = −1. For
the slow-wave case, two kinds of typical vortical structures are identified: quasi-streamwise
vortices, e.g. vortices 1–3; horseshoe vortices, e.g. vortices 4–6. For the intermediate- and
fast-wave cases, the characteristic vortical structures are bent quasi-streamwise vortices. The
surface wave propagates in the +x-direction.

In the case of c/u∗ = 25 (figure 7c), the spanwise vortex sheets become wider in the
streamwise direction than those in the c/u∗ = 14 case, because of the stronger surface
wave motion with the larger c value. The coherent vortices are still mainly along the
streamwise direction. The spatial frequency of the vortices is higher than those in the
cases of c/u∗ = 2 and c/u∗ = 14. Meanwhile, the size of vortices is reduced, with the
largest streamwise dimension about λ/2.
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Figure 8. The contours of 〈ω′
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x〉 and 〈ω′

zω
′
z〉 normalized by (u2

∗/ν)2 for Airy wave case
with ak = 0.25: (a) c/u∗ = 2, (b) c/u∗ = 14, (c) c/u∗ = 25. The surface wave propagates in
the +x-direction.

The characteristics of the instantaneous vortical structures discussed above are
consistent with the statistics of the vorticity fluctuations. Figure 8 shows the streamwise
and vertical components of the phase-averaged enstrophy 〈ω′

iω
′
i〉. For the slow-wave

case, the high-intensity region of 〈ω′
xω

′
x〉 is located on the windward side of the wave.

The high-intensity region of 〈ω′
zω

′
z〉 is located above the wave trough, with a smaller

peak than that of 〈ω′
xω

′
x〉. A comparison between the statistical result in figure 8(a)

and the direct observation in figure 7(a) indicates that for the slow-wave case, the
quasi-streamwise vortices on the windward side have vorticity vectors parallel to
the wave surface and therefore have a larger component in the x-direction than in
the z-direction. These quasi-streamwise vortices start from the trough, extend to the
downstream direction, lift up above the crest and then become weak above the lee
side of the crest. This variation is found to be similar to the distribution of Reynolds
stress due to Q2 events, which will be discussed in § 5.3.

When the wave age increases to c/u∗ = 14 and 25, the high-intensity region of
〈ω′

xω
′
x〉 is located above the wave crest, while the high-intensity region of 〈ω′

zω
′
z〉

is located above the windward side. The location difference between 〈ω′
xω

′
x〉max and

〈ω′
zω

′
z〉max implies the change of primary direction of the vortices over the wave crest.

Direct observation of the instantaneous vortical structures in figure 7(b, c) confirms
this change of vortex direction: the quasi-streamwise vortices are along the streamwise
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Figure 9. Comparison of the vertical profiles of the averaged (a) total momentum flux
[−uw]/u2

∗ and (b) wave-induced momentum flux [−uwww]/u2
∗ for Airy waves with ak = 0.1

and various wave ages. Values of current DNS results are denoted by the thick lines: ——,
c/u∗ = 2; — · —, c/u∗ = 14; — ·· —, c/u∗ = 25. DNS results of Sullivan et al. (2000) are
denoted by the thin lines with symbols: —�—, c/u∗ = 0; —∇—, c/u∗ = 3.9; —�—, c/u∗ =7.84; —�—,
c/u∗ = 11.5; —+—, c/u∗ = 16.2; ——, c/u∗ =22.7.

direction above the wave crest and bend downward to the vertical direction above
the windward side of the crest (when observed in the wave following frame, the
near-surface vortices propagate in the −x-direction for the cases of c/u∗ = 14 and 25).
Meanwhile, the spatial frequency of the vortices above the windward side (bending
downward to the vertical direction) is larger than those above the wave crest (primarily
pointing in the streamwise direction), especially for the case of c/u∗ =25 (figure 7c).
The higher frequency of vortices above the windward side is consistent with the result
in figure 8(b, c), which shows that the peak value of 〈ω′

zω
′
z〉 is higher than the peak

value of 〈ω′
xω

′
x〉.

The results given above indicate strong and complex dependence of near-surface
coherent vortical structures on the surface wave motion. A more detailed and extended
study on the dynamics of the near-surface coherent vortical structures, which goes
beyond the scope of the current paper, is reported in Yang & Shen (2009).

5. Wave effect on turbulence statistics
5.1. Vertical profiles of averaged momentum flux

In this section, we show the vertical profiles of the plane-averaged momentum
flux. With the values of u and w obtained from DNS and based on the variable
decomposition defined in (2.28), the plane-averaged total momentum flux [−uw] can
be decomposed as

[−uw] = −[u][w] + [−uwww] + [−u′w′] . (5.1)

Figure 9 shows the vertical profile of the total momentum flux [−uw] and the wave-
induced flux [−uwww] for the water wave cases with ak = 0.1. The DNS results from
Sullivan et al. (2000) are also plotted for comparison. The effect of a surface wave on
the momentum flux is mainly in the near-surface region and is more clearly indicated
by [−uwww] in figure 9(b). When the wave age is small, [−uwww] is negative near
the wave surface; as the wave age increases, [−uwww] increases and becomes more
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Figure 10. The profiles of the real and imaginary parts of Reynolds stress normalized by aku2
∗.

Values of current DNS results: ——, Airy wave with (ak, c/u∗) = (0.1, 2); – – –, Airy wave with
(ak, c/u∗) = (0.25, 2). Measurement results of Mastenbroek (1996; also see Mastenbroek et al.
1996) with (ak, c/u∗) = (0.18, 4.3) are denoted by � with an error bar. Model results of
Mastenbroek (1996) with different turbulence closures are also plotted: — —, mixing length;
— ·· —, e-ε; — · —, LRR.

positive. Our DNS result shows a trend of momentum flux variation consistent with
Sullivan et al. (2000).

We then compare the distribution of Reynolds stress 〈−u′w′〉 with the experiment
and model results of Mastenbroek et al. (1996). Following Mastenbroek et al. (1996),
in figure 10 we present the Reynolds stress distribution in terms of the components
in and out of phase with the wave, which are termed the real and imaginary parts of
Reynolds stress, respectively. The comparison indicates that our DNS result agrees
well with their measurements and supports the LRR closure model.

5.2. Wave effect on Reynolds stress

We next investigate the (x, z)-distribution of Reynolds stress, which is highly
dependent on the wave condition and is important to many processes including
turbulence transport and production. Figure 11 shows the contours of the normalized
Reynolds stress 〈−u′w′〉/u2

∗ in flows over an Airy wave with ak = 0.25 and c/u∗ = 2,
14 and 25. It is apparent that the Reynolds stress distribution is strongly dependent
on wave phase, and this dependence changes drastically with wave age. For the
case of (ak, c/u∗) = (0.25, 2), the distribution of Reynolds stress is asymmetric about
the wave crest. The maximum Reynolds stress lies above the wave trough at
(x, z − η(x))/λ= (0.812, 0.099) with the peak value about 1.67. Besides this apparent
peak region, there exists a second high-Reynolds-stress region that extends from
the first to the upward downstream direction over the wave crest. All together, the
positive-Reynolds-stress region rides above the windward side of the wave crest and
is almost parallel to the slope of the windward surface. Meanwhile, there is a small
region with negative Reynolds stress very close to the wave surface on the windward
side of the crest with the peak value −0.33 at (x, z − η(x))/λ= (1.092, 0.013). For
(ak, c/u∗) = (0.25, 14), as the wave age increases, the size of the negative-Reynolds-
stress region increases, and the peak value also increases to about −1.30 around the
position (x, z−η(x))/λ= (1.0, 0.029). Meanwhile, the positive peak of Reynolds stress
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Figure 11. The contours of normalized Reynolds stress 〈−u′w′〉/u2
∗ over Airy wave with

steepness ak = 0.25 and wave ages (a) c/u∗ = 2, (b) c/u∗ = 14 and (c) c/u∗ = 25. The surface
wave propagates in the +x-direction. The dashed contour lines represent negative values. The
contour interval is 0.2.

shifts upstream to (x, z − η(x))/λ= (0.438, 0.056), and its value increases to about
1.86. The positive and negative contours of Reynolds stress become more symmetric
about the wave crest compared with the case of c/u∗ =2. As the wave age further
increases to c/u∗ = 25, both positive and negative peaks of Reynolds stress become
slightly weaker than in the case of c/u∗ =14. The positive peak value reduces to
1.71, and its location moves slightly upstream to (x, z − η(x))/λ= (0.469, 0.043). The
negative peak reduces to −1.10, and its location also moves slightly upstream to
(x, z − η(x))/λ= (0.969, 0.028).

The distribution of Reynolds stress shown above is consistent with the result
of Kihara et al. (2007). In their paper, they calculated the wave-induced Reynolds
stress over Airy waves with steepness ak =0.1 and wave ages c/u∗ ∈ (0, 20). The
wave-induced Reynolds stress, (−u′w′)w , is defined as

(−u′w′)w = 〈−u′w′〉 − [−u′w′]. (5.2)

In the present study, we find that 〈−u′w′〉 is better, since it is more directly related
to the near-surface turbulent motions. The correlation between 〈−u′w′〉 and the
near-surface coherent vortical structures is discussed later in §§ 5.3 and 7.

The cases of Stokes waves, Airy waves with surface drift and a vertically waving
wall have similar spatial distributions of Reynolds stress as the Airy wave case.
Because of space limitation, their contours are not shown here. In order to make
a quantitative comparison, we plot the profiles of Reynolds stress along a constant
height above the wave surface with ak =0.25 and c/u∗ = 2, 14 and 25 for all these
cases in figure 12. The heights above the wave surface are chosen as (z − η)/λ= 0.1
(≈28 wall units) for c/u∗ = 2 and (z − η)/λ= 0.05 (≈14 wall units) for c/u∗ =14 and
25. Here the heights are chosen to be close to the peaks of Reynolds stress as shown
in figure 11.
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are at the height (z − η)/λ=0.05. The surface wave elevation for the Airy wave case is plotted
in (d ) to indicate the wave phase. The surface wave propagates in the +x-direction.

For the case of c/u∗ =2 (figure 12a), the profiles of Reynolds stress depart from the
sinusoidal shape and are asymmetric about the wave crest. The Stokes wave case has
higher Reynolds stress everywhere along the wave profile than the Airy wave case, and
the high-Reynolds-stress region shifts towards the upstream direction compared with
the Airy wave case. In contrast with the effect of surface nonlinearity, the existence
of surface drift results in a reduction of Reynolds stress and a phase shift of the
high-Reynolds-stress region towards the downstream direction. The vertically waving
wall case has similar Reynolds stress profile as the Airy wave case, except for the
slightly smaller value above the wave crest.

For the case of c/u∗ = 14 (figure 12b), the Reynolds stress profiles become closer
to the sinusoidal shape and more symmetric about the wave crest compared with the
case of (ak, c/u∗) = (0.25, 2). Compared with the Airy wave case, the profile for the
Stokes wave case has almost the same peak values. However, the streamwise distance
between the locations of the positive and negative peaks decreases from 0.455 for
the Airy wave case to 0.373 for the Stokes wave case. The vertically waving wall case
has a similar profile as the Airy wave case but with smaller positive and negative
peaks on the lee and windward sides, respectively.

The profiles for the case of c/u∗ = 25 (figure 12c) are similar to those for c/u∗ =14
but with smaller peak values. Unlike for c/u∗ =2, for c/u∗ = 25 the Stokes wave case
has smaller peak values than the Airy wave case. The waving wall case has a similar
profile as the Airy wave case but with a smaller positive peak on the lee side. For
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The dashed contour lines represent negative values. The surface wave propagates in the
+x-direction.

both c/u∗ = 14 and 25, the effect of surface drift on Reynolds stress distribution is
small because of the small ratio of q0/c as listed in table 2.

The distributions of Reynolds stress over water waves with ak = 0.1 are similar to
those for ak = 0.25 but with smaller peak values and therefore weaker streamwise
variation. Because of space limitation, the Reynolds stress distribution for the case of
ak =0.1 is not shown in the current paper.

As pointed out by Hudson (1993), for turbulence over a stationary wavy wall, there
exists a thin region with small negative Reynolds stress on the windward side of the
crest. Hudson (1993) attributed this negative Reynolds stress to an artefact of the
Cartesian coordinate system used in their simulation and analysis. However, earlier
laboratory experiments (see the review of Ursell 1956) on solid and water waves
showed quite different air flow structures between the two types of problems, which
led to the theoretical developments by Phillips (1957) and Miles (1957) and many
subsequent studies. The argument of Hudson (1993) may be inadequate to explain
the existence of the negative-Reynolds-stress region with large magnitude and large
size as shown in figure 11(b, c). When the water wave moves fast, the magnitude of
the vertical velocity in the turbulence induced by the wave motion is comparable
to the mean streamwise velocity. Similar to the negative correlation between u′ and
w′ in a boundary layer flow with a mean shear U (z), the wave-induced vertical
velocity here creates a shear flow W (x) in the vertical direction. The contours of
phase-averaged streamwise and vertical velocities in the case of an Airy wave with
(ak, c/u∗) = (0.25, 25) are shown in figure 13. A streamwise fluctuation u′ with the
shear profile W (x) on the windward side results in a positive correlation of u′ and w′,
i.e. a negative Reynolds stress. In this case, the sweep and ejection on the windward
side are respectively not indicated by w′ < 0 and w′ > 0 but by u′ < 0 and u′ > 0
instead. This will be further discussed in §§ 5.3 and 7.

In summary, as the wave age increases, Reynolds stress 〈−u′w′〉 near the wave
surface transits from an asymmetric distribution with a positive peak above the
wave trough to a more symmetric distribution with a negative peak on the windward
side and a positive peak on the lee side of the wave. This indicates the transition of
the wave boundary effect on turbulence from the geometric feature dominant for the
slow-wave case to the kinematic feature dominant for the fast-wave case. The wave
nonlinearity effect also indicates this transition. The surface-drift-induced reduction
and phase shift of Reynolds stress is only appreciable for the slow-wave case and can
be interpreted as a consequence of the fact that the surface drift releases part of the



Turbulence over waving surfaces 157

shear stress when it drifts with the mean turbulence flow towards the downstream
direction.

5.3. Quadrant analysis

A useful tool in the study of Reynolds stress is quadrant analysis. The contribution to
Reynolds stress is divided into four quadrants: Q1 (u′ > 0, w′ > 0), Q2 (u′ < 0, w′ > 0),
Q3 (u′ < 0, w′ < 0) and Q4 (u′ > 0, w′ < 0). Previous research shows that Q2 and Q4
motions dominate in the turbulence boundary layer of a flat wall, which are associated
with ejection and sweep events, respectively (Kim, Moin & Moser 1987). However,
as shown in § 5.2, for waves with relatively large phase speed, Q2 and Q4 do not
necessarily indicate ejections and sweeps. The classification of ejection and sweep
depends on local profiles of u and w.

Sullivan et al. (2000) calculated the quadrants of (〈u〉, 〈w〉) in a horizontal plane
near the wave surface. They showed a difference between turbulence over water
waves and that over a flat wall. In the present study, we further apply the quadrant
analysis to the turbulent momentum flux u′w′ at four different wave phases and at
two different heights above the wave surface.

Figure 14(i) shows the quadrants of (u′, w′) above the Airy wave of (ak, c/u∗) =
(0.25, 2). The vertical height above wave surface in terms of the wall units is (z −
η)+ = 5.3. Four different streamwise locations are chosen: (a) windward side of crest
(x/λ= 0), (b) crest (x/λ= 0.25), (c) leeward side of crest (x/λ= 0.5) and (d ) trough
(x/λ= 0.75). It is found that at this low height, above the windward side and wave
crest the turbulent events cover all quadrants, while above the leeward side and
trough, Q2 and Q4 dominate. On the leeward side, the amplitudes of u′ and w′ are
much smaller than those at the other three locations. As shown in figure 14(ii), when
the height increases to (z −η)+ = 17.8, the situation becomes similar to the turbulence
over a flat wall in that Q2 and Q4 events dominate at all of the streamwise locations.
On the leeward side, however, the dominance of Q2 and Q4 seems weaker than at
the other three locations.

Figure 15(i) shows the quadrants of (u′, w′) above an Airy wave with (ak, c/u∗) =
(0.25, 25) at (z − η)+ = 5.3. Because of the much stronger wave motion than that in
the slow-wave case, the distribution of (u′, w′) over the fast wave shows significant
wave phase dependence and streamwise variation. For all of the four streamwise
locations, the most significant contribution comes from the right half of the domain
in which u′ > 0, and the amplitude of u′ there is much larger than that in the left
half of the domain. On the windward side of the wave crest, unlike the flat-wall
case, the Q1 and Q3 events dominate. Above the crest and on the leeward side, Q2
and Q4 dominate instead. Above the trough, (u′, w′) has more equal contributions
from the upper and lower halves of the domain than at the other three streamwise
locations.

Figure 15(ii) shows the quadrants of (u′, w′) for (ak, c/u∗) = (0.25, 25) when the
height increases to (z − η)+ = 17.8. It is found that the distributions at (z − η)+ = 17.8
are similar to those at (z − η)+ = 5.3, except for the larger amplitude of w′ at the
higher location. The comparison between figures 14(ii) and 15(ii) indicates that as
the wave age increases, the influence of the surface wave motion on the quadrants
extends further into the bulk flow.

The Reynolds stress can be decomposed into contributions from the four quadrants.
Figure 16 shows the decomposed-Reynolds-stress distributions over an Airy wave with
(ak, c/u∗) = (0.25, 2). It is apparent that for this slow-wave case, the Q2 and Q4 events
are responsible for most of the Reynolds stress, while the contributions from Q1 and
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Q3 are much smaller. In figure 16(b), the peak value of Reynolds stress due to
Q2 (ejection in this case) starts above the wave trough, extends to the downstream
direction, lifts up above the wave crest and then becomes weak further downstream.
This distribution is found to be similar to the distribution of the quasi-streamwise
vortices shown in figures 7(a) and 8(a). This similarity suggests that for the slow-wave
case, ejection events on the windward side of the wave crest are correlated with the
quasi-streamwise vortices. In figure 16(d ), the peak value due to Q4 (sweep in this
case) is located right above the wave trough. Therefore, we conclude that the primary
peak region above the wave trough in figure 11(a) is generated by both the sweep
and ejection events, while the secondary peak region above the windward side and
crest is mainly due to the ejection event.

The distributions of the decomposed Reynolds stress over an Airy wave
with (ak, c/u∗) = (0.25, 25) are shown in figure 17. The distributions for
(ak, c/u∗) = (0.25, 14) are similar and are not shown here. It is found that for the fast-
wave case, the Q1 and Q3 events produce negative Reynolds stress on the windward
side of the wave crest, while Q2 and Q4 events contribute to positive Reynolds stress
on the leeward side of the wave crest. For negative Reynolds stress, the contribution
from Q1 is larger than that from Q3, while for positive Reynolds stress, Q4 makes
more contribution than Q2. This is consistent with the result in figure 15(i), which
shows that the events with u′ > 0 have much larger amplitude than those with u′ < 0.

Previous research has indicated that in a turbulent boundary layer flow, the
distribution of the Reynolds stress 〈−u′w′〉 is related to the near-surface coherent
turbulence motions and the vortical structures associated with these motions (see e.g.
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Figure 17. Same as in figure 16 but for (ak, c/u∗) = (0.25, 25).

Robinson 1991). The decomposition of Reynolds stress shown above indicates clearly
the correlation of Reynolds stress with near-surface turbulence motions. Further
discussion of the relation between the Reynolds stress and the vortical structures is
provided in § 7.

5.4. Turbulent kinetic energy

Figure 18 shows contours of turbulence intensities 〈u′2〉, 〈v′2〉 and 〈w′2〉 for turbulence
over Airy waves with ak = 0.25 and c/u∗ =2, 14 and 25. It is found that in the
near-surface region, the amplitudes of the three components of turbulence intensity
have the order of 〈u′2〉 > 〈v′2〉 > 〈w′2〉.

For the slow wave c/u∗ = 2, the high-intensity region of 〈u′2〉 coincides with the
high-value region of Reynolds stress, which is located above the wave trough. This
high-intensity region starts from the wave crest, extends to above the trough and
reaches the peak value of 3.78 at (x, z)/λ= (0.757, 0.084). It further extends over the
next crest, with the band of this high-intensity region almost parallel to the windward
side of the wave. The high-intensity region of 〈v′2〉 is located very close to the
windward side of the wave crest, with a peak value of 1.77 at (x, z)/λ= (1.011, 0.030).
The high-intensity region of 〈w′2〉 is also located near the windward side but with
a lower peak value of 0.63 at a higher location (x, z)/λ= (0.861, 0.055) than that of
〈v′2〉.

For the intermediate wave c/u∗ =14, the high-intensity region of 〈u′2〉 is located on
the windward side of the crest with a peak value of 4.81 at (x, z)/λ= (1.023, 0.056),
which coincides with the high-negative region of Reynolds stress. The peak of 〈v′2〉
with the value of 1.29 is also located above the windward side but at a higher
height (x, z)/λ= (0.930, 0.119) than the peak of 〈u′2〉. The intensity of 〈w′2〉 reduces
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Figure 18. The contours of turbulence intensity (normalized by u2
∗) over Airy waves with

steepness ak = 0.25 and wave ages (a) c/u∗ = 2, (b) c/u∗ = 14 and (c) c/u∗ = 25. The surface
wave propagates in the +x-direction.

monotonically when the wave surface is approached. Right above the wave crest and
trough, there exist two regions with low 〈w′2〉 intensity.

For the fast wave c/u∗ = 25, the high-intensity region of 〈u′2〉 is still located close
to the windward side but with a higher peak value of 5.48 and is closer to the
trough at (x, z)/λ= (0.839, 0.023) compared with the c/u∗ = 14 case. Similar to the
c/u∗ = 14 case, the high-intensity region of 〈v′2〉 is located near the windward side at
(x, z)/λ= (1.031, 0.132) with a peak value of 1.43. The near-surface distribution of
〈w′2〉 for c/u∗ = 25 is similar to the c/u∗ = 25 case.

The equation for the budgets of TKE (Hussain & Reynolds 1970) can be written
as
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. (5.3)

Here, A is the advection term; P is the production term; Tp is the pressure transport
term; φ is the pressure–strain correlation term; Dν is the viscous diffusion term;
ε is the dissipation term; and Tt is the turbulence transport term. When repeating
index is applied to the subscript ‘i’, (5.3) represents the balance of the total TKE
(1/2)〈u′2 + v′2 +w′2〉. When the subscript ‘i’ is fixed, (5.3) with i = 1, 2 or 3 represents
the balance of budgets for (1/2)〈u′2〉, (1/2)〈v′2〉 and (1/2)〈w′2〉, respectively.

Figure 19 shows the mean profiles of the budget terms of the total TKE for
the turbulence over Airy waves with ak = 0.25 and c/u∗ = 2, 14 and 25. Following
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Figure 19. Budgets of TKE in turbulence over Airy waves with steepness ak = 0.25 and wave
ages (a) c/u∗ = 2, (b) c/u∗ = 14 and (c) c/u∗ = 25. Line patterns for budgets are as follows:
· · · · · ·, advection; ——, production; – · –, pressure transport; – ·· –, viscous diffusion; — —,
turbulent transport; – – –, dissipation. All terms are normalized by 100u3

∗/λ.

Calhoun & Street (2001), we normalize all of the terms by 100u3
∗/λ. The TKE budgets

for the stationary wavy wall case are consistent with Calhoun & Street (2001) and are
not shown here. It is found that for all of the three cases, production and dissipation
terms dominate except near the surface where the production term becomes zero and
the viscous diffusion term balances the dissipation term. In the current paper, we
focus on the effects of surface wave motions on the production term. The effects of
wave motions on other TKE budget terms go beyond the scope of the present paper
and will be reported in a future work. For c/u∗ = 2, the peak of the production term
is located around z+ = 25, while for c/u∗ = 14 and 25, the production peaks move
towards the surface to around z+ = 10.

The production term in (5.3) can be rewritten as

P = P 11
x + P 11

z︸ ︷︷ ︸
P 11

+ P 33
x + P 33

z︸ ︷︷ ︸
P 33

, (5.4)

where the superscripts ‘11’ and ‘33’ represent the terms for (1/2)〈u′2〉 and (1/2)〈w′2〉,
respectively (there is no production for (1/2)〈v′2〉). Here,

P 11
x = −〈u′2〉∂〈u〉

∂x
, P 11

z = −〈u′w′〉∂〈u〉
∂z

,

P 33
x = −〈u′w′〉∂〈w〉

∂x
, P 33

z = −〈w′2〉∂〈w〉
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.

⎫⎪⎪⎬
⎪⎪⎭ (5.5)
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Figure 20. The contours of the production term (normalized by 100u3
∗/λ) for (1/2)〈u′2〉 in

turbulence over Airy waves with ak = 0.25 and c/u∗ = 2, 14 and 25. (a) Total production
P 11 = −〈u′2〉∂〈u〉/∂x − 〈u′w′〉∂〈u〉/∂z; (b) P 11

x = −〈u′2〉∂〈u〉/∂x; (c) P 11
z = −〈u′w′〉∂〈u〉/∂z.

The dashed contour lines represent negative values. The surface wave propagates in the
+x-direction.

For all of the three wave ages, the production terms P 11
x and P 11

z dominate, while
P 33

x and P 33
z are one order of magnitude smaller. Because of space limitation, the

distributions of P 33
x and P 33

z are not discussed here.
Figure 20 shows the contours of P 11, P 11

x and P 11
z for the case of Airy waves with

ak =0.25 and c/u∗ =2, 14 and 25. For the case of slow waves, the high-intensity
region of P 11 starts from the wave crest and extends to above the next trough. A
comparison between P 11

x and P 11
z indicates that the contribution of P 11

z dominates.
The peak of P 11

z is located above the wave trough because of the large Reynolds
stress 〈−u′w′〉 (see figure 11a) there. The high-intensity region of P 11

z extends further
downstream to above the windward side because of the strong shear layer of large
∂〈u〉/∂z that is indicated by the dense streamwise velocity contour lines in figure 4(d ).

The above-given distribution of the production for the slow-wave case is similar
to that in the case of turbulence over a stationary wavy wall (see e.g. Calhoun &
Street 2001). This implies that when the wave is slow, the surface wave affects the
production as well as the TKE mainly by its wavy geometry. As wave age increases,
the distribution of the production becomes significantly different from that in the
case of a stationary wavy wall.

For the intermediate- and fast-wave cases, the magnitudes of P 11
x and P 11

z become
comparable. Their distributions are similar but with reversed sign. On the windward
side of the wave, the term P 11

x is positive because 〈u′2〉 > 0 and ∂〈u〉/∂x < 0 (see
figure 13a); the term P 11

z is negative because −〈u′w′〉 < 0 and ∂〈u〉/∂z > 0. The
locations of the positive peak of P 11

x and the negative peak of P 11
z coincide. Because

P 11
x is larger than P 11

z , their combined effect results in a positive peak of P 11

on the windward side. On the lee side, the term P 11
x is negative because 〈u′2〉 > 0

and ∂〈u〉/∂x > 0; the term P 11
z is positive because −〈u′w′〉 > 0 and ∂〈u〉/∂z > 0. The
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Figure 21. Profiles of production P 11 (normalized by 100u3
∗/λ) above wavy surfaces with

steepness ak =0.25 and wave ages (a) c/u∗ = 2, (b) c/u∗ = 14 and (c) c/u∗ =25: ——, Airy
wave; — · —, Stokes wave. For c/u∗ = 2, the profiles are at the height (z − η)/λ= 0.1; for
c/u∗ = 14 and 25, the profiles are at the height (z − η)/λ=0.05. The surface wave elevation for
the Airy wave case is plotted in (d ) to indicate the wave phase. The surface wave propagates
in the +x-direction.

contributions from P 11
x and P 11

z almost cancel each other and result in a negative peak
of P 11 that is much weaker than the positive peak on the windward side. It is clear
that the sign of the total production P 11 is determined by P 11

x for the intermediate-
and fast-wave cases. On the windward side of the wave, the large value of 〈u′2〉
results in a large positive value of P 11

x , which serves as a large production of 〈u′2〉
itself.

Figure 21 shows the comparison of the production term P 11 between the Airy
wave case and the Stokes case. Similar to the comparison of the Reynolds stress in
§ 5.2, here we plot the profiles of P 11 along (z − η)/λ= 0.1 for c/u∗ = 2 and along
(z − η)/λ= 0.05 for c/u∗ = 14 and 25.

For the case of (ak, c/u∗) = (0.25, 2), the maximum value of P 11 in the Stokes
wave case is slightly larger and shifts upstream compared with that in the Airy wave
case. For the case of (ak, c/u∗) = (0.25, 14), the Stokes wave case has a slightly larger
maximum value of P 11, and the locations of both the maximum and minimum P 11

shift towards the wave crest compared with the Airy wave case. For the case of
(ak, c/u∗) = (0.25, 25), the maximum P 11 of the Stokes wave case is much smaller
than that of the Airy wave case. Similar to the case of c/u∗ =14, the locations of
both the maximum and minimum P 11 shift towards the wave crest compared with
the Airy wave case.
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Figure 22. The phase-averaged contours of normalized pressure 〈p〉/ρu2
∗ for turbulence

over Stokes waves with steepness ak = 0.25 and wave ages (a) c/u∗ = 2, (b) c/u∗ = 14 and
(c) c/u∗ =25. (d ) Stationary wavy wall with ak = 0.25. The dashed contour lines represent
negative values. The contour intervals are 0.5, 1.0, 5.0 and 0.8 in (a)–(d ), respectively. For
progressive-wave cases, the surface wave propagates in the +x-direction.

The wave nonlinearity effect on the production of TKE shown here is similar
to that for the Reynolds stress discussed in § 5.2. A further discussion of the wave
nonlinearity effect on the turbulent statistics is given in § 7.

6. Pressure, drag force and wave growth rate
The distribution of the turbulence pressure field near the wavy surface is of special

interest to applications including wave growth and attenuation under wind forcing
and fish swimming efficiency, among others. Stewart (1970), Donelan (1999) and
Makin et al. (2007) measured the air flow structure and wave drag for wind over
water waves. Sullivan et al. (2000) and Kihara et al. (2007) studied the dependence of
the air pressure field on the wave age for Airy waves with a low steepness ak = 0.1.
Shen et al. (2003) studied the pressure-related form drag and swimming power for
the turbulence over a fish-like vertically waving wall with a large steepness ak =0.25.
In the present study, the effects of different types of wavy boundary motions with
different wave steepness and wave ages are examined in detail.

Figure 22(a–c) shows the phase-averaged pressure distribution over Stokes waves
with steepness ak = 0.25 and wave ages c/u∗ = 2, 14 and 25, respectively. For
comparison, the phase-averaged pressure contours over a stationary wavy wall
with ak =0.25 are plotted in figure 22(d ). It is found that for the case of
(ak, c/u∗) = (0.25, 2), the pressure contours are tilted at a short distance above the
wave. The high-pressure region is located above the windward side of the wave crest
with its peak located on the wave surface. On the other hand, the low-pressure region
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Figure 23. Comparison of pressure profiles with exponential decays: ——, the profile of
Kudryavtsev et al. (2001) estimated by Donelan et al. (2006) with ak =0.05 and c/u∗ = 3.5
(c/U10 = 0.13) (their record LG9); — —, water wave with (ak, c/u∗) = (0.1, 2); — · —, water
wave with (ak, c/u∗) = (0.25, 2); — ·· —, exp(−kz); · · · · ··, exp(−0.55kz). The profiles are
normalized by the pressure amplitude |p| at (a) kz = 0.2 and (b) kz = 1, respectively (i.e.
assuming that the measurements are conducted at the corresponding heights).

is located between the trough and the leeward side of the crest. As c/u∗ increases, the
pressure contours become more symmetric about the wave crest and extend further
into the bulk flow, almost straight vertically. The high-pressure and low-pressure
regions are located right above the wave trough and crest, respectively. These results
indicate the influence of strong vertical wave motion on the pressure distribution for
relatively fast-moving waves.

The result in figure 22 also indicates that the air pressure in the vicinity of the wave
surface is complex, especially for the slow-wave case. For accurate estimation of the
surface pressure, Donelan et al. (2006) showed the necessity of putting the pressure
probe close to the wave surface. In figure 23, we compare the vertical pressure decay
profiles of our slow-wave cases with the pressure profile of Kudryavtsev, Makin &
Meirink (2001) shown by Donelan et al. (2006) with their record LG9. Two exponential
profiles, exp(−kz) and exp(−0.55kz), are also plotted for comparison. Figure 23 shows
that the pressure decay rate decreases as the wave steepness increases. When the
measurement is taken at kz = 0.2, the surface pressure values from our simulations
collapse, and the two exponential extrapolations provide values with about 5 % errors;
when the measurement is taken at kz =1 instead, the surface pressure values from
our simulations diverge, and the extrapolations can have errors as large as 20 %. This
comparison shows the consistency of our results with Kudryavtsev et al. (2001). It
strongly supports the conclusion by Donelan et al. (2006) and confirms the advantage
of wave-following pressure probe measurements.

By means of bandpass-filtering and Hilbert transform, Donelan et al. (2006)
obtained the conditionally phase-averaged surface pressure distribution for a slow-
wave case (their record LG9). To validate the pressure distribution in our simulation,
we performed an additional simulation with ak =0.05 that matches the mean field
condition and compared our phase-averaged surface pressure with their data. As
shown in figure 24(a), our simulation result agrees well with their measurements.
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Figure 24. Surface pressure distribution for turbulence over water waves. Comparison with
experiment for a slow wave with ak = 0.05 is shown in (a): �, field measurement data of
Donelan et al. (2006); solid line, current DNS. Results for water waves with ak = 0.25 and
c/u∗ = (a) 2, (b) 14 and (c) 25 are also plotted: —�—, Airy wave; —©—, Stokes wave; —+—, Airy
wave with surface drift. The dash-dot-dotted line is the surface elevation of the Airy wave to
indicate the wave phase. The surface wave propagates in the +x-direction.

Figure 24(b–d ) illustrates the effect of wave nonlinearity and surface drift on the
surface pressure distribution. Airy waves and Stokes waves with steepness ak = 0.25
and wave ages c/u∗ = 2, 14 and 25 are shown. For the Airy wave case, the wind-
induced surface drift effect is also examined. With the surface pressure distribution,
the dimensionless form drag per unit area due to pressure is quantified as

Fp =
1

λ

∫ λ

0

〈p〉
ρu2

∗

dη

dx
dx, (6.1)

and the wave growth rate parameter introduced by Miles (1957) is obtained as (Li
et al. 2000)

β =
2Fp

(ak)2
. (6.2)

The corresponding form drag and growth rates of the cases in figure 24(b–d ) are
shown in table 3.

For the slow wave (ak, c/u∗) = (0.25, 2) in figure 24(b), the Stokes wave case has
almost the same values for both the maximum and minimum surface pressures as in
the Airy wave case. However, because of the steeper crest and the flatter trough, the
Stokes wave case has obviously lower surface pressure above the crest and the lee
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Airy wave
Airy wave Airy wave Stokes wave with drift
(ak = 0.1) (ak = 0.25) (ak = 0.25) (ak = 0.25)

c/u∗ Fp β Fp β Fp β Fp β

2 0.161 32.29 0.474 15.18 0.540 17.27 0.430 13.76
14 0.005 1.022 −0.010 −0.314 −0.0001 −0.004 −0.009 −0.303
25 −0.044 −8.753 −0.251 −8.048 −0.352 −11.27 −0.265 −8.473

Table 3. Form drag and wave growth rate parameter for various wavy boundaries.

side while slightly higher surface pressure above the windward side compared with
the Airy wave case. These differences result in about 14 % larger form drag and wave
growth rate for the Stokes wave than for the Airy wave as shown in table 3. When
the surface drift is considered, the maximum of the surface pressure on the windward
side remains almost unchanged compared with the case with no surface drift, while
the surface pressure above the crest becomes larger. Meanwhile, the minimum surface
pressure becomes smaller and shifts downstream towards the wave trough compared
with the case with no surface drift. These differences result in 9 % smaller form drag
and wave growth rate (table 3).

For the case of c/u∗ = 14 and c/u∗ = 25, because of the larger vertical acceleration
on the crest and smaller vertical acceleration on the trough, the surface pressure above
the Stokes wave has larger negative peak on the crest and smaller positive peak on
the trough compared with the Airy wave case. For the intermediate wave c/u∗ = 14,
the more symmetric distribution of surface pressure results in smaller form drag and
growth rate than the slow wave of c/u∗ =2 for both the Airy wave and the Stokes wave
cases. For the fast wave c/u∗ = 25, the amplitude of surface pressure becomes over five
times larger than the value for c/u∗ =14. With a slightly asymmetric distribution of
surface pressure around the wave crest, the large magnitude of surface pressure results
in larger negative form drag and growth rate than the case of c/u∗ =14 (table 3). The
amplitudes of the form drag and growth rate for the case of c/u∗ = 25 are smaller
than those for the case of c/u∗ = 2, in which case the asymmetry of the pressure
distribution is much more significant. For c/u∗ =25, the amplitude of negative form
drag and growth rate for the Stokes wave is about 40 % larger than those for the
Airy wave. For both c/u∗ = 14 and c/u∗ =25, the effects of surface drift on surface
pressure distribution and consequently on the form drag and growth rate are small
because of the small ratio of q0/c (table 2).

Our DNS result shows that when the wave age increases to the intermediate-wave
range, the form drag becomes very small or even negative. This seems to disagree
with the measurements or RANS simulations in the literature. This difference is
due to the Reynolds number dependence of the pressure distribution and form drag
(Mastenbroek 1996; Meirink & Makin 2000). As shown by Sullivan et al. (2000), for
different Reynolds numbers, the transition points of wave age for the form drag to
become zero do not collapse when the wave age is expressed as c/u∗; if the wave
age is defined on the basis of a characteristic mean velocity, e.g. c/Uλ/2 or c/Uλ,
the convergence can be significantly improved. Here, Uλ/2 and Uλ are respectively the
mean horizontal velocities at the heights z = λ/2 and z = λ above the wave surface. The
value of c/Uλ/2 is shown in table 4. Our comparison in figure 25 is consistent with the
conclusion of Sullivan et al. (2000). In figure 25(b), the scaling with c/Uλ/2 is shown;
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c/u∗
c/Uλ/2

2
0.13

14
0.84

25
1.41

Table 4. Values of wave ages for the Airy wave of ak = 0.1 discussed in figure 25.
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Figure 25. Wave-induced form drag for water waves with ak = 0.1 as a function of (a) c/u∗
and (b) c/Uλ/2: �, current DNS results for Airy waves; —�—, DNS results of Sullivan et al.
(2000); —�—, DNS results of Kihara et al. (2007); ∇, results of Mastenbroek (1996; also see
Mastenbroek et al. 1996) with LRR closure scheme. Results of Li et al. (2000) with different
turbulence closure: — ·· —, E − κz; — · —, q2l; – – –, LRR.

for the scaling with c/Uλ, the result is equally good and is not shown here because
of space limitation. Besides the wave age dependence, figure 25 also shows that the
peak of the form drag profile shifts towards higher wave age as the Reynolds number
increases (the Reynolds number increases as we go from the DNS cases to Li et al.
2000 and to Mastenbroek et al. 1996). This trend is consistent with the comparison
among the DNS, low-Reynolds-number model and high-Reynolds-number model by
Meirink & Makin (2000, figure 9).

In table 3, we also compare the form drag and the growth rate parameter for
Airy waves with ak = 0.1 and 0.25. Because of the smaller steepness, the cases of
ak =0.1 have smaller form drag than those for ak = 0.25. For the slow wave, the
case of ak = 0.1 has a growth rate of β = 32.29, which is larger than the value of
β = 15.18 for ak = 0.25. This variation is consistent with the measurements compiled
by Peirson & Garcia (2008, figure 6), who showed that the wind-induced growth rate
parameter of slow water waves increases as the wave steepness decreases.

To further study the wave steepness effect on the form drag and growth rate
parameter, we repeat the simulation of c/u∗ =2 with additional ak values and plot
the result in figure 26. That is to say in addition to ak = 0.1 and 0.25 shown throughout
the paper, ak = 0.01, 0.025, 0.05, 0.15 and 0.2 are also considered here. Figure 26(a)
shows that the wave growth rate parameter β , normalized by ρu2

∗ as defined in (6.1)
and (6.2), decreases monotonically as ak increases. This is consistent with the data
compiled by Peirson & Garcia (2008), which are also plotted in figure 26(a) for
comparison.

Interestingly, we find that when normalized by ρU 2
λ/2, the resultant growth rate

parameter

βλ/2 =
2

(ak)2
1

λ

∫ λ

0

〈p〉
ρU 2

λ/2

dη

dx
dx (6.3)

has much less variation, as shown in figure 26(b). This suggests that the
normalization based on a characteristic mean velocity, e.g. Uλ/2, may help reduce the
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Figure 26. Wave growth rate parameter normalized by (a) ρu2
∗ and (b) ρU 2

λ/2, plotted as a

function of wave steepness. In (a), measurement data compiled by Peirson & Garcia (2008) are
plotted for comparison and are denoted by the solid symbols with error bars: �, Bole (1967);
�, Banner (1990); �, Mastenbroek et al. (1996); �, Banner & Peirson (1998); and �, Peirson &
Garcia (2008). Results from numerical simulations are denoted as follows: ×, RANS result of
Mastenbroek (1996) using the LRR model; +, result of Mastenbroek (1996) with the addition
of wave-coherent tangential stress contribution (Peirson & Garcia 2008); #, RANS result of
Li et al. (2000) using the LRR model; �, DNS result of Sullivan et al. (2000); �, DNS result
of Kihara et al. (2007); 	, DNS result of Kihara et al. (2007) with wave-coherent tangential
stress contribution taken into account; 
, the present DNS result; �, the present DNS result
with wave-coherent tangential stress contribution taken into account. For the present DNS
results, c/u∗ =2. For data from the literature, cases with c/u∗ values in the neighbourhood of
2 are selected here.

steepness-induced variation of the growth rate parameter for the slow-wave case.
Recall that in figure 25, the use of Uλ/2 in the definition of wave age helps the results
from different simulations to collapse. The above results suggest the advantage of
using the large-scale mean velocity at a height comparable to the wavelength (e.g.
Uλ/2 or Uλ) as the characteristic velocity scale over using the friction velocity u∗. To
further obtain a comprehensive understanding of this problem, additional simulations
and more analyses are required.

At ak = 0.1, figure 26(a) shows that the β value obtained from our DNS falls
between the values obtained from the DNS studies by Sullivan et al. (2000) and
Kihara et al. (2007). However, the β values from RANS studies, using the LRR
model, by Mastenbroek (1996) and Li et al. (2000) are lower than the DNS results,
despite the fact that kinematic similarities are obtained between the present DNS and
the RANS simulation by Mastenbroek (1996) (cf. figure 10).

The recent finding by Peirson & Garcia (2008) provides a possible approach to
reduce the discrepancy in β values. If the contribution of tangential stress is taken
into account, the β values from the numerical model increase to be closer to the
measurement data. The tangential surface stress contributes to the wave growth
through its coherence with the wave surface tangential velocity ut . The corresponding
dimensionless surface drag per unit area is given as

Fwc =
1

cλ

∫ λ

0

〈τs〉
ρu2

∗
ut

1

(η2
x + 1)1/2

(η2
x + 1)1/2dx

=
1

cλ

∫ λ

0

ν

u2
∗

1

(η2
x + 1)3/2

((
1 − η2

x

) (
∂〈u〉
∂z

+
∂〈w〉
∂x

)
+ 2ηx

(
∂〈w〉
∂z

− ∂〈u〉
∂x

))
× (us − ηxws)dx. (6.4)
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Figure 27. Comparison of temporal growth rate γ with Donelan et al. (2006): ——, their
parameterization γ = 0.17(Uλ/2/c−1)|Uλ/2/c−1|; �, their hindcast estimates based on the data
of Donelan (1999); – – –, parameterization of Donelan (1999) γ =0.28(Uλ/2/c − 1)|Uλ/2/c − 1|.
The results of the current simulation are denoted by the open symbols: �, Airy wave with
various steepness; �, Airy wave with ak = 0.25; �, Stokes wave with ak = 0.25.

When Fwc is added to Fp (cf. (6.2)), figure 26(a) shows that the difference in the
corresponding values of β between the DNS and the LRR model of Mastenbroek
(1996) reduces significantly. The agreement with the measurement values is improved.
(The wave-coherent tangential stress was not reported in Sullivan et al. 2000 and
Li et al. 2000, and therefore the corresponding modified values of β are not shown
here.) The above improvement is furthermore obtained for other wave steepness,
with a more significant effect in low-ak cases, for which the contribution from the
wave-coherent tangential stress is more important (Peirson & Garcia 2008).

Furthermore, as discussed by Belcher & Hunt (1998), many factors, such as the
Reynolds number, the variation of surface roughness and the turbulence models, can
affect the pressure distribution and the corresponding value of β . To study these
effects, systematic simulations using LES of air–water coupled flow for a wide range
of Reynolds number may provide a useful tool. This goes beyond the scope of the
current paper and will be investigated in our future study.

Under the wind pressure forcing, the temporal growth rate of a water wave with
angular frequency ω (cf. Donelan et al. 2006) can be obtained as

γ =
ρw

ρa

1

ωE(ω)

∂E(ω)

∂t
=

(u∗

c

)2

β , (6.5)

where E = ρwga2/2 is the wave energy and ρw and ρa are the water and air densities,
respectively. The dependence of γ on the inverse wave age Uλ/2/c is estimated as

γ = Sλ/2(Uλ/2/c − 1)|Uλ/2/c − 1| , (6.6)

where Sλ/2 is the sheltering coefficient. Donelan & Pierson (1987) obtained Sλ/2 = 0.19
from electromagnetic microwave-scattering field measurements. Based on laboratory
measurements, Donelan (1999) obtained Sλ/2 = 0.28. Donelan et al. (2006) further
improved this parameterization by using wave-follower field measurement data and
showed that Sλ/2 = 0.17. The comparison in figure 27 shows that our DNS result
agrees very well with Donelan et al. (2006) and supports their improvement in the
parameterization.

Peirson & Garcia (2008) compiled the data from various measurements. In
figure 28, we compare the present DNS result with the data. The values from the
parameterizations by Donelan & Pierson (1987), Donelan (1999) and Donelan et al.
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Figure 28. Comparison of steepness dependence of sheltering coefficient at half-wavelength
height above wave surface. The data compiled by Peirson & Garcia (2008) are denoted by the
solid symbols with the error bars: �, Bole (1967); �, Banner (1990); �, Mastenbroek et al.
(1996); �, Banner & Peirson (1998); and �, Peirson & Garcia (2008). The results of slow-wave
cases in the present study are denoted by the open symbols: �, Airy wave; �, Stokes wave.
Parameterizations based on measurement data are indicated: (i) Sλ/2 = 0.19, Donelan & Pierson
(1987); (ii) Sλ/2 = 0.28, Donelan (1999); and (iii) Sλ/2 = 0.17, Donelan et al. (2006).

(2006) are also indicated in the figure. It should be noted that these parameterizations
were obtained on the basis of the measurement data for waves with steepness less
than those from Banner (1990) and Banner & Peirson (1998) shown in figure 28. The
applicable wave steepness for these parameterizations was not reported explicitly in
the original studies.

Figure 28 indicates that our DNS result agrees with the parameterization by
Donelan et al. (2006) with the 0.17 sheltering coefficient. The present DNS result
also falls in the range of the measurement data. However, the measurement data
by Peirson & Garcia (2008) indicate variations in the sheltering coefficient as the
wave steepness increases, while the present DNS shows an almost-constant sheltering
coefficient. This difference may be partially due to the difference in the wave age
values (in figure 28, c/u∗ is always 2 in our simulation, while it varies in Peirson &
Garcia 2008). It may also be caused by the difference in the wave conditions. For
example, as the steepness of a slow wave increases, the nonlinearity of the wave shape
increases, the asymmetry of the waveform becomes more significant, and the variation
of the surface roughness changes; for very large steepness, wave breaking happens
(e.g. the data from Banner 1990). Some of these effects go beyond the capability of the
present DNS using prescribed wave boundary conditions. To study their influence,
an air–water coupled simulation is required.

We also compared β and γ (as functions of c/u∗) obtained from our DNS with
existing simulations and theories, as well as the measurements compiled by Plant
(1982) (not shown). Our result is consistent with the existing simulations and theories.
However, for β there exists large scattering in the measurement data. The numerical
results fall into the range of the measurement data but are close to their lower bound.
As pointed out by Belcher & Hunt (1998), although much progress has been made
in the model development, there still exists a difference between the prediction and
the measurement, and additional research effort is required. As shown earlier, the
inclusion of wave-coherent tangential stress helps reduce the difference (Peirson &
Garcia 2008).
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Figure 29. Sketch of coherent vortical structures over (a) slow and (b) fast waves.

7. Discussion and conclusions
In the present study, DNS has been performed for turbulent flows over various

wavy boundaries, including stationary wavy walls, vertically waving walls, Airy waves
and Stokes waves. Effects of various surface wave features have been considered,
including wave steepness, wave age, wave nonlinearity and wind-induced surface
drift. Through systematic simulations with detailed near-surface flow structures well
resolved, we have investigated effects of different boundary waving motions on the
turbulent flow.

The surface wave boundary condition consists of both geometric and kinematic
features. The geometry of the wave surface provides periodically varying surface
curvature and alternating pressure gradients that affect the turbulent flow above it.
The horizontal and vertical motions of the surface wave provide direct distortion to
the velocity field of the turbulent flow.

Turbulent flow structure is found to be strongly dependent on wave age. For a slow
wave c/u∗ = 2, the geometric effect of the surface wave on turbulence dominates.
The distribution of turbulence statistics including Reynolds stress and TKE is similar
to that over a stationary wavy wall. Our investigation suggests that above the slow
wave, there exist two types of coherent vortical structures, namely quasi-streamwise
vortices and horseshoe vortices, as shown in figure 29(a). The horseshoe vortices are
usually located near the wave trough. The quasi-streamwise vortices are often located
near the windward side of the wave crest; and some of them extend over the crest
and lift above the next trough. Since the surface motion of the slow wave is small, the
turbulence velocity field is dominated by the shear of the streamwise velocity U (z) over
the wavy surface, i.e. geometric constraint. The horseshoe vortices have their heads
on the upstream side, while their legs are on the downstream side. The head has ωy > 0
that is consistent with the vorticity induced by the mean shear U (z). The rotation
of the head and the counter-rotating motions of the two legs induce a downwelling
motion of the fluid on the inner side of the horseshoe. Because of the mean shear
profile U (z), this downwelling motion results in a sweep event (Q4) of high-speed
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fluid towards the wave boundary. The quasi-streamwise vortices on the windward side
of the crest have either positive or negative ωx . The quasi-streamwise vortices often
appear individually, rather than as counter-rotating pairs. For a quasi-streamwise
vortex with ωx < 0, when observed along the streamwise direction, its rotating motion
results in an upwelling motion on the right side and a downwelling motion on the left
side. Because of the mean shear profile U (z), the vortex is associated with an ejection
event (Q2) on its right side and a sweep event (Q4) on its left side. A quasi-streamwise
vortex with ωx > 0 has similar effects but with the locations of Q2 and Q4 switched.

For the intermediate wave c/u∗ =14 and fast wave c/u∗ = 25, the kinematic effect
of the surface wave on turbulence dominates the geometric effect. For these two cases,
the wave motions are large, and the horizontal profile of the wave-induced vertical
velocity W (x) becomes comparable to that of U (z) (see figure 29b). In both cases, the
quasi-streamwise vortices dominate near the wave surface. A sketch of the coherent
vortical structures over a fast wave is shown in figure 29(b). These vortices start from
the windward side and extend over the crest. They tend to bend to follow the curvature
of the wave. On the windward side, the upstream end of a quasi-streamwise vortex
tilts towards the vertical direction. For a vortex with ωx < 0, this tilting results in a
vertical vorticity component ωz < 0. When observed along the streamwise direction,
the rotation of the upstream end causes a counter-streamwise motion of fluid on its
right side and a streamwise motion of fluid on its left side. With the shear profile
W (x) along O–O ′ as shown in figure 29(b), the rotation of the upstream end results
in a Q3 event on its right side and a Q1 event on its left side. When the vortex
extends over the crest, its downstream end reaches the leeward side of the crest and
turns towards the horizontal direction. The rotation of the downstream end of the
vortex with ωx < 0 causes an upwelling motion on its right side and a downwelling
motion on its left side. Because of the mean shear profile U (z), this results in a Q2
event on the right side and a Q4 event on the left side. Near the crest, the effects of
ωx and ωz cancel each other. The situation for a quasi-streamwise vortex with ωx > 0
is similar but with the locations switched between Q1 and Q3 and between Q2 and
Q4. More details on the characteristics of the coherent vortical structures are given
in Yang & Shen (2009).

Besides the wave age dependence, the effect of surface waves on the turbulence
structures also depends on the wave steepness ak. The larger ak is, the more the wave
influences distributions of turbulent quantities, and the further the influence extends
into the bulk flow.

The surface wave nonlinearity effect, though not as strong as wave steepness and
wave age effects, still has an appreciable influence on the turbulence above water
waves. A summary of this surface wave nonlinearity effect on turbulence is shown
in figure 30. For the slow wave c/u∗ =2, the geometric effect of the surface wave
dominates. The Stokes wave has a steeper crest that is higher and narrower than
the crest of the Airy wave. This results in an increase in the intensity of turbulence
quantities (e.g. Reynolds stress and TKE) and a phase shift of their distributions
towards the upstream crest. For c/u∗ = 14 and 25, the kinematic effect of the surface
wave dominates the geometric effect. The vertical velocity of the Stokes wave has a
smaller amplitude, and the peaks on both sides of the wave crest shift towards the
crest. This results in a reduction in the intensity of turbulence quantities and a phase
shift of their distributions towards the crest from both sides.

The effect of wind-induced surface drift on turbulence is important only for the
slow-wave case of c/u∗ = 2, where the ratio of the mean drift speed to the wave phase
speed is q0/c = 0.275. The presence of the surface drift results in a reduction in the
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Figure 30. Sketch of wave nonlinearity effect on turbulence structures over (a) slow and
(b) intermediate and fast waves. The solid lines represent the properties for the Stokes wave
case, while the dashed lines represent the properties for the Airy wave case; TS represents the
turbulent quantities for the Stokes wave case; TA represents the turbulent quantities for the
Airy wave case. The sizes of TS and TA represent their relative magnitudes.

Reynolds stress and a phase shift of the high-Reynolds-stress region in the downstream
direction. This intensity reduction and phase shift further affect other turbulence
quantities such as turbulence intensity and production of TKE. For c/u∗ = 14 and 25,
the influence of surface drift on turbulence structure is negligible because the value
of q0/c is small.

The unique features of coherent vortical structures near the wave surface observed
in the current study and the key role these vortices play in momentum transport
suggest the importance of further study in this area. A better understanding of the
physical process may lead to improved turbulence modelling. For example, LES at
high Reynolds numbers requires wall-layer models to relate the shear stress to flow
quantities. Knowledge of vortical structures may be used to construct such models
(see e.g. Piomelli et al. 1989).

For the problem of wind–wave interaction, air flow separation may play an
important role in steep waves. In the present study, no apparent separation in
the mean flow is observed. Our investigation of the instantaneous flow field indicates
that instantaneous flow separations happen intermittently around the lee side and the
trough of the surface wave. The present result is compared with the field measurements
by Donelan et al. (2006) at Lake George in Australia. It should be noted that in the
measurements, the waves are in a transitional water depth condition, which results
in stronger nonlinearity effects than the case of prescribed deep-water waves in the
present study. As a result, the size and intensity of the instantaneous separation in
the present study is smaller than the full separation shown by Donelan et al. (2006).
To extend our turbulence simulation capability to the study of air flow separation
over steeper waves, we have been developing alternative approaches with air and
water motions dynamically coupled that provide more realistic interface boundary
conditions and waveforms (e.g. sharper and asymmetric at the wave crest). This flow
separation problem is currently being studied by our group.

Based on our DNS data, pressure-induced form drag and wave growth rate have
been calculated. The values are consistent with existing measurement data and agree
with other numerical results. Our simulation indicates that wave nonlinearity can
have an appreciable impact on form drag and wave growth rate. This finding suggests
the importance of including realistic wave dynamics, rather than using simple wave
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theory, in the study of wind–wave interaction. In numerical studies, coupled simulation
of wind and wave motions is desirable. This is a subject of our ongoing research.
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