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a b s t r a c t

A numerical method for the simulation of viscous flows with undulatory walls and free sur-
faces is presented. The simulation domain is discretized by a boundary-fitted and time-
dependent grid. The Navier–Stokes equations, subject to fully nonlinear kinematic and
dynamic boundary conditions at the free surface and no-slip boundary condition at the
wall, are simulated by a hybrid pseudo-spectral and finite difference method in space
and a semi-implicit fractional-step method in time. The performance of the method is
demonstrated by a series of test cases including flows over wavy boundaries, various sur-
face waves, and interaction between vortices and free surfaces. Validation by convergence
test and extensive comparisons with previous theoretical, experimental, and numerical
studies indicate the accuracy and efficiency of the method. Finally, a simulation example
of turbulence and free surface interaction is presented. Results show that the rich features
of the free surface such as surface waves, splats, anti-splats, dimples, and scars are cap-
tured accurately. Characteristic vortical structures and variation of turbulence statistics
in the near-surface region are also elucidated.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Interaction of viscous flows, laminar or turbulent, with undulatory boundaries such as a waving wall and a free surface
with wave motion is of interest to many fluid flow problems. Examples of important applications include wind over water
waves [54,55], flow control by wavy plate [15,16,26,40], interactions of ocean turbulence with surface waves and internal
waves [21,18], and damping of water waves by bottom mud flows [9,28]. To obtain a fundamental understanding of the
mechanisms of these phenomena, it is desirable to have an accurate and efficient direct simulation tool for viscous flows
with undulatory boundaries.

For flows with complex boundaries, methods based on fixed Eulerian grid have been found effective. For example, the
immersed boundary method (see e.g. [30]) has been applied to flows near wavy boundaries [46,47,52]; the level-set method
(see e.g. [38]), the group of methods based on a front-tracking approach (see e.g. [44,48]), and the volume-of-fluid method
(see e.g. [36]) have been used to simulate flows with free surfaces. If the detailed flow structures near the boundaries need to
be resolved, methods based on boundary-fitted grid with grid clustering near the boundary layers are desirable. In many pre-
vious studies (see e.g. [5,6,7,13,21,24,58,59,60]), orthogonal or non-orthogonal grids are used in the physical space to follow
the curvature of the moving wavy boundaries.

In the present study, we aim at developing a numerical method that is capable of accurately resolving the fine details at
the undulatory boundaries. Viscous flows interacting with waves with moderate steepness is the main focus of the applica-
tions. Our numerical scheme is based on the specific physics of the problems. First, because the waves have finite amplitude
and are non-breaking, we apply an effective boundary-fitted grid that follows the wavy boundary motion based on algebraic
. All rights reserved.
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mapping. Second, in many applications, strong shear is present at the boundaries including the free surfaces (due to e.g. wind
blowing). Clustered grid near the boundaries is needed to resolve the boundary layers adequately, which makes the explicit
time-integration schemes for viscous terms used in many previous free-surface simulations (e.g. [13,63]) unsuitable here
because of the constraint on the timestep by the small grid size. In the present study, we adopt the fractional-step method
[23] in which a semi-implicit scheme is used for the viscous terms. Because of the nonlinear terms caused by the grid map-
ping, substantial complexities are introduced to the problem and require special treatment. Third, the deformable free sur-
face produces complex physics such as the effects of nonlinear wave interactions and surface vorticity [35,45,57]. Therefore,
precise computation of the surface evolution is required, in addition to the accurate simulation of the Navier–Stokes equa-
tions [53]. In the present study, the spatial discretization in the horizontal directions is realized by a spectral method, so that
the surface elevation is accurately resolved up to high order [63]. We use an explicit scheme to advance the surface defor-
mation in time subject to the fully nonlinear kinematic free-surface boundary condition. The location of the free surface at
the new timestep then establishes a basis for the grid mapping for the simulation of the Navier–Stokes equations. Special
care is taken to ensure the consistence in the accuracy of the free surface evolution, the simulation of the Navier–Stokes
equations, and the boundary condition treatment.

Besides the development of numerical method, another goal of this study is to perform systematic tests for various flows
with undulatory surfaces to document the various aspects of the simulation performance. In this paper, we present compre-
hensive test results for flows over wavy boundaries, various surface waves, vortex and free surface interaction, and interac-
tion between turbulence and free surface. Quantitative comparisons with the data in the literature are performed and good
agreement is obtained. These cases may be used for the numerical test of other methods for similar applications in the future.

This paper is organized as follows: Section 2 discusses the numerical scheme. Section 3 documents the test cases and the
results for validation. Finally, conclusions are given in Section 4.

2. Numerical method

2.1. Problem definition and governing equations

The present study aims at simulating fluid problems involving undulatory boundaries, which can be located at the top of
the computational domain (e.g. simulation of water motion below ocean surface waves), at the bottom of the domain (e.g.
simulation of wind over water waves), or at both the top and the bottom (e.g. simulation of water motion between surface
waves and the lutocline above bottom mud flow). To take into account the general situation, we consider the physical do-
main shown in Fig. 1(a), which is bounded by a top wavy free surface and a bottom undulatory boundary. We set the x- and
y-axes to be horizontal, the z-axis to be vertical, and the origin to be located at the mean level of the top surface. The defor-
mation of the top surface is denoted by gðx; y; tÞ; Hðx; y; tÞ is the height of the domain from z ¼ 0 to the bottom boundary,
which is further decomposed into a mean height H and a variation component H0ðx; y; tÞ.

We consider the incompressible fluid with density q and kinematic viscosity m governed by the Navier–Stokes equations
and continuity equation
Fig. 1.
comput
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Illustration of coordinate transformation. The irregular physical domain in the ðx; y; z; tÞ space is transformed to a right rectangular prism in the
ational domain ðn;u; f; sÞ. Only a vertical cross-section in the three dimensional space is plotted here.
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@ui

@t
þ @ðuiujÞ

@xj
¼ � 1

q
@p
@xi
þ m

@2ui

@xj@xj
; ð1Þ

@ui

@xi
¼ 0: ð2Þ
Here, ui ði ¼ 1;2;3Þ ¼ ðu;v;wÞ are the velocity components in the x-, y-, and z-directions, respectively; p is the dynamic pres-
sure, which is related to the total pressure P through p ¼ P þ qgz with g the gravitational acceleration.

In order to adequately resolve the flow details near the undulatory boundaries, we employ a boundary-fitted grid. As
shown in Fig. 1(b), the irregular physical domain in the ðx; y; z; tÞ space is transformed to a right rectangular prism in the com-
putational domain ðn;u; f; sÞ with the following algebraic mapping:
n ¼ x; u ¼ y; f ¼ zþ Hðx; y; tÞ
gðx; y; tÞ þ Hðx; y; tÞ ¼

zþ H þ H0ðx; y; tÞ
g0ðx; y; tÞ þ H

; s ¼ t; ð3Þ
where g0 ¼ gþ H0. The Jacobian matrix of the mapping is
J ¼
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ux uy uz ut

fx fy fz ft

sx sy sz st

2
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3
7775 ¼
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0 1 0 0
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1
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0 0 0 1

2
66664

3
77775; ð4Þ
where the subscripts denote the partial derivatives. This coordinate transformation has been used in atmospheric and oce-
anic applications (see e.g. [11,20]). By applying the chain rule, we obtain the following transformation of derivatives
@
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@f ;
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@
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9>>>>>=
>>>>>;

ð5Þ
We substitute the operators (5) into Eqs. (1) and (2), and obtain the governing equations in the computational space
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where the Laplacian operator is decomposed into r2 ¼ r2
nu þr2

f as:
r2
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@f2 : ð11Þ
We note that the velocities ðu;v ;wÞ in the above equations are still defined based on the velocity vectors in ðx; y; z; tÞ
space, and the algebraic mapping equation (3) is not conformal. This approach is justified by the physical problems we focus
on, in which the wave surfaces do not have too steep or overturning geometries. In some of the previous studies, conformal
mapping was used to simulate flows with complex boundary geometries. As pointed out by Hodges and Street [21], the con-
formal mapping is accurate but complex and costly, and is unnecessary if the surface is not steep. Refs. [31,34] showed that
the error due to the grid non-orthogonality is small for grid distortion angle less than 40�. For the physical problems con-
sidered in this study, the surface inclination angle is typically less than 20�, and the grid distortion caused by the algebraic
mapping equation (3) does not cause problem in all the tests we have performed.
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2.2. Boundary conditions

In this study, periodic boundary conditions are used in the horizontal directions. In the following subsections, we discuss
the boundary conditions at the top and the bottom undulatory boundaries.

2.2.1. Top boundary conditions
For the problems in question, the top boundary is usually a free surface with elevation g (for the special situation of a flat

surface, we simply set g ¼ 0). The kinematic boundary condition (KBC) states that the free surface is material:
gt ¼ w� ugx � vgy at z ¼ g: ð12Þ
In our simulation, (12) is integrated in time to upgrade the free-surface deformation and the associated grid mapping.
The dynamic boundary condition (DBC) specifies the stress balance at the free surface. The stress components in the sur-

face-normal and surface-tangential directions are expressed as
rn ¼ n � ½r� � nT; rt1 ¼ t1 � ½r� � nT; rt2 ¼ t2 � ½r� � nT: ð13a;b; cÞ
Here ½r� is the stress tensor expressed as ½r�ij ¼ �Pdij þ qmðui;j þ uj;iÞ, with dij the Kronecker delta. The superscript ‘T’ denotes
the transpose of the vector. And n is the unit vector in the outer-pointing (with respect to the simulation domain) normal
direction of the free surface; t1 and t2 are the unit vectors tangential to the free surface in the ðx; zÞ-and ðy; zÞ-planes, respec-
tively. These surface direction vectors are expressed as
n ¼
ð�gx;�gy;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
x þ g2

y þ 1
q ; t1 ¼

ð1;0;gxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ 1
p ; t2 ¼

ð0;1;gyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

y þ 1
q : ð14Þ
The stress balance at the free surface requires that
rn ¼ rnjexternal þ c
ð1þ g2

x Þgyy þ ð1þ g2
yÞgxx � 2gxgygxy

ð1þ g2
x þ g2

yÞ
3=2 ; ð15Þ

rti ¼ rtijexternal; i ¼ 1;2; ð16Þ
where the subscript ‘external’ denotes the other side of the free surface (e.g. airside for the water wave simulation), and c is
the surface tension.

By substituting Eqs. (13a,b,c) and (14) into conditions (15) and (16) and by applying the transformation (5) and continuity
equation (9), we obtain the Dirichlet boundary condition for the pressure
p ¼ qggþ 2qm
ð1þ g2

x þ g2
yÞ
�ð1þ g2

yÞ
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x Þ
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x þ g2

yÞ
3=2 at z ¼ g; ð17Þ
and the Neumann boundary conditions for the velocity components
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Here,
C0 ¼
gþ H
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yÞ
2 ; ð21Þ
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C2
1 ¼ gxð1þ g2

x � g2
yÞ; C2

2 ¼ gyð1� g2
x þ g2

yÞ;
C2

3 ¼ gyð3þ 3g2
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ðg2
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q
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8>>>>>>><
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2.2.2. Bottom boundary condition
At the bottom boundary, we assume its geometry and velocity are prescribed:
H0 ¼ �gb;

ðu;v ;wÞ ¼ ðub;vb;wbÞ at z ¼ �H;

�
ð24Þ
where the subscript ‘b’ denotes the variables at the bottom boundary. The above Dirichlet conditions are chosen because in
our applications such as wind over waves, the air is much lighter than the water and sees the water surface as a moving solid
boundary [3,10,55]. Even for the internal wave problem where the densities of the different layers of the fluids do not differ
much, the coupling of Eq. (24) for the upper layer with the stress-driven conditions given in Eqs. (15) and (16) for the lower
layer using an iterative coupling method still ensures the continuity of velocity and the balance of stress at the interface (for
details of this coupling see the companion paper [56]).

We remark that the above Dirichlet bottom boundary condition is specified particularly for the physical problems con-
sidered in the present study. For more general problems, a set of KBC and DBC for the bottom boundary can be obtained
in a way similar to the analysis in Section 2.2.1. In doing so, the surface elevation g in Eqs. (12), (13a)–(c), (14)–(23) should
be replaced by �H0 accordingly. The implementation of numerical discretizations is similar to the top boundary case and is
straightforward.

2.3. Numerical scheme

2.3.1. Spatial discretization
In this study, we use a Fourier-series-based pseudo-spectral method for the spatial discretization in the horizontal direc-

tions. The computational domain is discretized by equally spaced grid in the n- and u-directions (labeled by the indices i and
j, respectively), as shown in Fig. 2(a). We use the 2=3 rule to treat the aliasing error in the pseudo-spectral method. In the
vertical direction, we use a second-order finite difference scheme on a staggered grid [39], as shown in Fig. 2(b). In the ver-
tical direction, the regular grid points are labeled by k, while the staggered grid points are labeled by k�. The variables u;v ,
and p are defined on the regular grid ði; j; kÞ, while w is defined on the vertically-staggered grid ði; j; k�Þ.

2.3.2. Free surface evolution
In the simulation, the free surface elevation g is updated by advancing Eq. (12) with a second-order Runge–Kutta (RK2)

scheme [62]:

� step 1:
gðnÞt ¼ wðnÞ � uðnÞgðnÞx � v ðnÞgðnÞy ; ð25Þ

gðnþ1Þ� ¼ gðnÞ þ DtgðnÞt ; ð26Þ
� step 2:
gðnþ1Þ�
t ¼ wðnþ1Þ� � uðnþ1Þ�gðnþ1Þ�

x � v ðnþ1Þ�gðnþ1Þ�
y ; ð27Þ

gðnþ1Þ ¼ gðnþ1Þ� þ Dt
2

gðnþ1Þ�
t � gðnÞt

� �
: ð28Þ
Hereinafter, the superscripts ‘ðnÞ’ and ‘ðnþ 1Þ’ denote the variables at the timesteps ðnÞ and ðnþ 1Þ, respectively; and the
superscript ‘ðnþ 1Þ�’ denotes the variables after the first step of the RK2 method.

At each timestep, firstly gðnþ1Þ� is calculated using Eqs. (25) and (26), and the corresponding grid mapping is calculated.
Eqs. (6)–(9) are solved on this gðnþ1Þ� -based grid to obtain uðnþ1Þ�

i [13,21,62] (details of the solver are given in Section 2.3.3).
Then gðnþ1Þ� is updated to gðnþ1Þ using Eqs. (27) and (28). The value of uðnþ1Þ

i is solved on the gðnþ1Þ-based grid and the simu-
lation advances to the next timestep.

2.3.3. Navier–Stokes solver
The Navier–Stokes equations (6)–(9) are integrated in time based on a fractional-step method [2,23,61]. Similar to Kim

and Moin [23],
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the grid points. In the vertical direction as plotted in (b), a staggered grid is used, with variables u; v , and p defined on the grid points denoted by �, and
variable w defined on the grid points denoted by �.

D. Yang, L. Shen / Journal of Computational Physics 230 (2011) 5488–5509 5493
ûi � uðnÞi

Dt
þ ft

@

@f
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 !
¼ 3RðnÞi � Rðn�1Þ

i

2
þ mr2

f

ûi þ uðnÞi
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 !
; ð29Þ

uðnþ1Þ
i ¼ ûi �

Dt
q
@}

@xi

ðnþ1Þ
; ð30Þ
with
@ui

@xi

ðnþ1Þ
¼ 0: ð31Þ
Here, the hat denotes the variables at the intermediate step of the fractional-step method. A Crank–Nicolson (CN) scheme is
used for ther2

f -component of the viscous terms (Eq. 11), and a second-order Adams–Bashforth (AB2) scheme is used for the
convective terms and the r2

nu-component of the viscous terms (Eq. 10). The term RðnÞi is expressed as
RðnÞi ¼ �
@ðuiuÞ
@n

ðnÞ

� fðnÞx
@ðuiuÞ
@f

ðnÞ

� @ðuivÞ
@u

ðnÞ

� fðnÞy
@ðuivÞ
@f

ðnÞ

� fðnÞz
@ðuiwÞ
@f

ðnÞ

þ mr2
nuuðnÞi : ð32Þ
Eq. (29) is rewritten as
r2
f ûi �

2ûi

mDt
� ft

m
@ûi

@f
¼ �1

m
3RðnÞi � Rðn�1Þ

i

� �
�r2

f uðnÞi �
2uðnÞi

mDt
� ft

m
@ui

@f

ðnÞ
: ð33Þ
Note that different from [23], the viscous terms in the f-direction and the other two directions are treated by the CN and AB2
schemes, respectively [29,61]. With a second-order central difference scheme in the z-direction for Eq. (33), the velocity at
the intermediate step, ûi, is solved through a tridiagonal linear equation system. Meanwhile, the semi-implicit scheme is still
used for the dominant viscous termsr2

f ui to allow the fine resolution of the boundary layer without the penalty of the small
viscous timestep. This modification of the fractional-step method is found to be computationally efficient for the study of
turbulence–wave interaction [55].

The scalar } in Eq. (30), called pseudo-pressure, is related to the dynamic pressure by [23]
pðnþ1=2Þ ¼ }ðnþ1Þ � qmDt
2
r2}ðnþ1Þ: ð34Þ
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By applying the divergence operator to Eq. (30) and substituting Eq. (31) into it, we obtain a Poisson equation for the pseudo-
pressure:
r2}ðnþ1Þ ¼ � q
Dt

@ûi

@xi
: ð35Þ
This Poisson equation is solved to obtain }ðnþ1Þ. It is noted that the Laplacian operator in Eq. (35) is nonlinear because of the
algebraic mapping. With the pseudo-spectral method in the horizontal directions, Eq. (35) needs to be solved iteratively.
After substituting Eq. (5) into Eq. (35), we rewrite the nonlinear Poisson equation as
@2}

@n2

½mþ1�

þ @2}

@u2

½mþ1�

þ 1
H2

@2}

@f2

½mþ1�

¼ �2fðnþ1Þ
x

@2}

@n@f

½m�

� 2fðnþ1Þ
y

@2}

@u@f

½m�

� r2
f

ðnþ1Þ
}½m� þ 1

H2

@2}

@f2

½m�

þ q
Dt

@û
@n
þ fðnþ1Þ

x
@û
@f
þ @v̂
@u
þ fðnþ1Þ

y
@v̂
@f
þ fðnþ1Þ

z
@ŵ
@f

� �
: ð36Þ
Here the superscripts ‘½m�’ and ‘½mþ 1�’ denote the previous and current iteration steps, respectively; and the superscript
‘ðnþ 1Þ’ denotes timestep as in Eq. (28). With the spectral method in the horizontal directions, each Fourier mode in Eq.
(36) is now decoupled from the others and can be solved in the z-direction through a tridiagonal linear equation system.
A modified Newton’s method [40,62] is employed, which uses the values from the previous two steps to accelerate the con-
vergence of iteration. For the simulations studied in this paper, the relative residual error in } is reduced to less than 10�10

within six iterations (typically it takes two to four iterations).
After Eq. (36) is solved, the solution }ðnþ1Þ is used to update the velocity from ûi to uðnþ1Þ

i . The velocity at timestep ðnþ 1Þ is
thus divergence free.

2.3.4. Boundary condition for intermediate velocity
As shown in Section 2.3.3, we use a fractional-step method with a semi-implicit scheme for the viscous terms. A boundary

condition for the intermediate velocity ðû; v̂ ; ŵÞ is thus needed. By substituting Eq. (30) into Eqs. (18)–(20), we obtain the
following free-surface boundary conditions:
@û
@f
¼ S1

u þ S1
} þ S1

f at z ¼ g; ð37Þ

@v̂
@f
¼ S2

u þ S2
} þ S2

f at z ¼ g; ð38Þ

@ŵ
@f
¼ S3

u þ S3
} at z ¼ g; ð39Þ
where for i ¼ 1;2
Si
u ¼ C0 Ci

1
@û
@u
þ @v̂
@n

� �
þ Ci

2
@û
@n
þ Ci

3
@v̂
@u
þ Ci

4
@ŵ
@n
þ Ci

5
@ŵ
@u

� �
; ð40Þ

Si
} ¼ �C0

Dt
q

Ci
1

@

@u
@}

@n
þ fx

@}

@f

� �
þ @

@n
@}

@u
þ fy

@}

@f

� �	 
ðnþ1Þ

þ Ci
2
@

@n
@}

@n
þ fx

@}

@f

� �ðnþ1Þ

þ Ci
3
@

@u
@}

@u
þ fy

@}

@f

� �ðnþ1Þ
(

þ Ci
4
@

@n
fz
@}

@f

� �ðnþ1Þ

þ Ci
5
@

@u
fz
@}

@f

� �ðnþ1Þ
)
þ Dt

q
@

@f
@}

@ni
þ fi

@}

@f

� �ðnþ1Þ

; ð41Þ

Si
f ¼ C0 Ci

6
rt1jexternal

qm
þ Ci

7
rt2jexternal

qm

� �
; ð42Þ
and for i ¼ 3
S3
u ¼ �ðgþ HÞ @û

@n
þ fxS1

u þ
@v̂
@u
þ fyS2

u

� �
; ð43Þ

S3
} ¼ �

Dt
q
ðgþHÞ � @

@n
@}

@n
þ fx

@}

@f

� �ðnþ1Þ

þ fxS1
} �

@

@u
@}

@u
þ fy

@}

@f

� �ðnþ1Þ

þ fyS2
u

( )
þ Dt

q
@

@f
fz
@}

@f

� �ðnþ1Þ

: ð44Þ
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Similarly, by substituting Eq. (30) into Eq. (24), we have the Dirichlet bottom boundary condition for velocity
û ¼ uðnþ1Þ
b þ Dt

q
@}
@n þ fx

@}
@f

� �ðnþ1Þ
at z ¼ �H;

v̂ ¼ v ðnþ1Þ
b þ Dt

q
@}
@uþ fy

@}
@f

� �ðnþ1Þ
at z ¼ �H;

ŵ ¼ wðnþ1Þ
b þ Dt

q fz
@}
@f

� �ðnþ1Þ
at z ¼ �H:

8>>>>><
>>>>>:

ð45Þ
In Eqs. (41), (44) and (45), the value of }ðnþ1Þ is estimated by
}ðnþ1Þ ¼ 3}ðnÞ � 3}ðn�1Þ þ }ðn�2Þ þ OðDt3Þ: ð46Þ
Eq. (29) is solved subject to boundary conditions (37)–(39) and (45). Note that the right-hand sides of Eqs. (40) and (43) con-
tain the unknown variables ðû; v̂ ; ŵÞ, and iteration is thus required (see e.g. [53]). Typically two to four iterations are needed
in our simulations for the relative residual error to be less than 10�10.

As shown in Eq. (46), the information at the previous three timesteps is needed for the computation. Therefore, special
treatment is needed for the self-starting of the scheme. We perform a preprocess simulation with a fine timestep of
Dt0 ¼ Dt=10 for 30 timesteps, with the first three timesteps using forward Euler scheme. The values at t ¼ 0; 10Dt0, and
20Dt0 are then used to start the formal simulation at t ¼ 30Dt0. With this treatment, our experience shows that the numer-
ical error induced by the initial time integration is negligible.
2.3.5. Boundary condition and projection method for pseudo-pressure
In order to solve Eq. (36) for the pseudo-pressure }, proper boundary condition is needed. According to Eq. (34), the value

of pseudo-pressure }ðnþ1Þ at z ¼ g is estimated as
}ðnþ1Þ ¼ pðnþ1=2Þ þ qmDt
2
r2}ðnþ1Þ ¼ 1

8
3pðnþ1Þ þ 6pðnÞ � pðn�1Þ� �

þ qmDt
2
r2 3}ðnÞ � 3}ðn�1Þ þ }ðn�2Þ� �

þ OðDt3Þ: ð47Þ
The values of pðn�1Þ; pðnÞ and pðnþ1Þ are calculated by Eq. (17) based on uðn�1Þ
i ; uðnÞi and uðnþ1Þ

i , respectively. Here the value of
uðnþ1Þ

i is estimated using
uðnþ1Þ
i ¼ ûi �

Dt
q

@

@xi
3}ðnÞ � 3}ðn�1Þ þ }ðn�2Þ� �

þ OðDt3Þ: ð48Þ
At the bottom boundary, a projection method is used [23] and a Neumann condition for }ðnþ1Þ is obtained from Eq. (30) as
@}

@f

ðnþ1Þ
¼ q

Dtfz
ðŵ�wðnþ1Þ

b Þ at z ¼ �H: ð49Þ
We remark that with the numerical schemes in Eqs. (46) and (48), Eqs. (33) and (35) are solved separately. The iteration
between Eqs. (33) and (35), which is usually required when a semi-implicit scheme is used (see e.g. [53]), is therefore
avoided and the computational cost is reduced.
2.3.6. Summary of the numerical scheme
The general free-surface and wavy wall flow problem considered in this study is simulated on the basis of the following

procedure:

(i) Update the surface elevation from gðnÞ to gðnþ1Þ� based on Eqs. (25) and (26) and calculate the corresponding Jacobian
matrix equation (4).

(ii) Solve ûi from Eq. (33) subject to boundary conditions (37)–(39) and (45).
(iii) Solve }ðnþ1Þ� from Eq. (35) subject to boundary conditions (17) and (49).
(iv) Update velocity from ûi to uðnþ1Þ�

i based on Eq. (30).
(v) Update the free-surface elevation from gðnþ1Þ� to gðnþ1Þ based on Eqs. (27) and (28) and calculate Eq. (4).

(vi) Repeat steps (ii)–(iv) and obtain uðnþ1Þ
i and }ðnþ1Þ.

Note that f ðnþ1Þ� denotes the variable after the first step of the RK2 scheme and f ðnþ1Þ denotes the variable after the second
step (see Section 2.3.2). After the foregoing steps (i)–(vi), the entire simulation advances from timestep ðnÞ to ðnþ 1Þ.

We also note that various numerical schemes (i.e. RK2, AB2, and CN) are involved in the temporal integration, which have
different stability criteria. Use x-direction as an example. The RK2 scheme for the free surface KBC requires that Dt < c1Dx=c
with c1 < 2 (c is the phase speed of the surface wave); the AB2 scheme for the nonlinear convective terms of the bulk flow
requires that Dt < c2Dx=u with c2 < 1; and the CN scheme for the viscous terms requires that Dt < c3ReðDxÞ2 with c3 < 1. The
combinations of these schemes give the stability criterion Dt ¼minðc1Dx=c; c2Dx=u; c3ReðDxÞ2Þ. For the simulations consid-
ered in the present study, we set c1 ¼ c2 ¼ c3 ¼ c0 with c0 in the range of 0.4–0.9, and all the three directions are considered.
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2.4. Parallelization

The computational domain is decomposed in the y-direction and parallelized using Message Passing Interface (MPI). For
the spectral method in the horizontal directions, two-dimensional matrix transpose is used when fast Fourier transform
(FFT) is needed in the y-direction [12]. Satisfactory scalability in terms of speed-up, load balancing, and memory allocation
has been obtained on supercomputers of Cray XT4 and SGI Altix ICE.
3. Test results

We systematically test the performance of the present method using simulations of laminar and turbulent flows interact-
ing with free surfaces and wavy boundaries. The test cases are documented in this section.

3.1. Decaying vortex

First, we test our Navier–Stokes solver by simulating the problem of a two-dimensional decaying vortex, which has an
analytical solution [21,53]. In the domain of ð0 6 x 6 2p;0 6 z 6 p=2Þ, the solution is given by
uðx; z; tÞ ¼ � cos x sin ze�2t ;

wðx; z; tÞ ¼ sin x cos ze�2t ;

pðx; z; tÞ ¼ �0:25ðcos 2xþ cos 2zÞe�4t :

8><
>: ð50Þ
This analytical solution is also used to prescribe the Dirichlet boundary conditions on the domain boundaries.
For the hybrid spatial discretization scheme used in the present method, the error is dominated by the finite difference

scheme in the vertical direction and an overall second-order spatial accuracy is expected. For the test of spatial convergence
rate m, we use three different grid resolutions: (1) 64� 160, (2) 64� 80, and (3) 64� 40. Here and hereafter, the grid in each
direction is evenly spaced unless otherwise indicated. We thus have the vertical grid sizes of the three cases as Dz2 ¼ 2Dz1

and Dz3 ¼ 4Dz1. The timestep is chosen such that the Courant number equals 0.5. Let �s
i;j ¼max jf ðDziÞ � f ðDzjÞj, where f ðDziÞ

is the simulation result of variable using the grid resolution of Dzi, we have
m ¼ �log2

�s
2;1

�s
3;2

 !
: ð51Þ
Table 1 lists the error and spatial convergence rate, which confirms the second-order accuracy.
For the time integration, the timestep in our simulation is constrained by the Courant number, and the contribution of the

temporal discretization error to the total numerical error is smaller than that of the spatial error [17,33,53]. To test the tem-
poral convergence rate n, we use three different timesteps: Dt1 ¼ 0:008; Dt2 ¼ 0:01, and Dt3 ¼ 0:012. A reference simulation
with Dt4 ¼ 0:0008 is also performed. All of the simulations are performed on a fixed 64� 50 grid. The difference between
each simulation and the reference case is used to eliminate the spatial discretization error [1,53]. Let
�t

i;j ¼max jf ðDtiÞ � f ðDtjÞj, we have
n ¼ 1
2

log1:25

�t
2;4

�t
1;4

 !
þ log1:2

�t
3;4

�t
2;4

 !( )
: ð52Þ
As shown in Table 2, second-order temporal accuracy is obtained.

3.2. Flow over a stationary wavy wall

Next we perform tests for the problem of flow over a stationary wavy wall, for which data from previous studies exist for
comparison. For all of our test cases in this subsection, a Couette flow driven by a constant shear stress at the top boundary
that is kept flat is simulated; the bottom wavy boundary has the configuration matching those in the literature as discussed
below.
Table 1
Convergence test of the decaying vortex case for different spatial resolutions with a fixed Courant
number of 0.5. Result at t ¼ 0:24 is used.

Grid resolution Convergence rate m
(1) 64� 160 (2) 64� 80 (3) 64� 40

u �s
2;1 ¼ 3:1e� 5 �s

3;2 ¼ 1:2e� 4 2.0

w �s
2;1 ¼ 5:2e� 5 �s

3;2 ¼ 2:1e� 4 2.0



Table 2
Convergence test of the decaying vortex case for different timesteps with a fixed spatial resolution 64� 50. Dt4 ¼ 0:0008. Result at t ¼ 0:24 is used.

Dt1 ¼ 0:008 Dt2 ¼ 0:01 Dt3 ¼ 0:012 Convergence rate n

u �t
1;4 ¼ 1:4e� 6 �t

2;4 ¼ 2:3e� 6 �t
3;4 ¼ 3:3e� 6 2.1

w �t
1;4 ¼ 6:9e� 7 �t

2;4 ¼ 1:1e� 6 �t
3;4 ¼ 1:6e� 6 2.1
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We first consider a two-dimensional laminar Couette flow, which was previously studied theoretically (see e.g. [4]) and
numerically (see e.g. [43]). Our simulations are carried out with Re ¼ Uk=m ¼ 104 (U is the mean velocity at the top boundary,
and k is the wavelength of the wavy boundary) in a computational domain of size ðLx;HÞ ¼ ðk; kÞ using a 128� 129 grid. The
grid is clustered in the z-direction, with Dzmin ¼ 0:001k near the bottom and top boundaries and Dzmax ¼ 0:015k at the center
of the domain. We remark that in this two-dimensional Couette flow case, the flow field is initially laminar and no turbulent
disturbance is introduced in the simulation. With Re ¼ 104, the flow remains laminar [43] and the result can be compared
with the theoretical solution [4].

Fig. 3(a) and (b) shows the comparison of the surface pressure distribution with [4,43]. Both [4,43] used the same con-
formal-mapping-based boundary-fitted grid, with the former solving the Orr–Sommerfeld equation and the latter perform-
ing DNS of the Navier–Stokes equations. As shown in Fig. 3(a), for the case of small wave steepness ak ¼ 0:01 (a is the wave
amplitude and k ¼ 2p=k is the wavenumber), the present result agrees well with the literature. Fig. 3(b) shows that, when
the wave steepness increases to ak ¼ 0:2, the present simulation on the non-orthogonal grid still provides the surface pres-
sure that agrees well with the orthogonal-grid simulation result of [43]. At such large ak, the deviation from the linear theory
of [4] is noticeable and is as expected.

We next test three-dimensional turbulent Couette flows. In our simulations, the Reynolds number is Re ¼ Uk=m ¼ 104; the
computational domain has the size of ðLx; Ly;HÞ ¼ ð4k;3k;2kÞ; and the grid resolution is 128� 128� 129 and is clustered in
the vertical direction towards the boundary, with Dzmin ¼ 0:0015k and Dzmax ¼ 0:03k. The turbulence is initially seeded by
random velocity noises and then produced by the shear in the flow.

Fig. 4 shows the phase-averaged mean pressure distribution over a wavy boundary of ak ¼ 0:05p, which matches the con-
dition in [10,64]. Our result agrees with the DNS result of [10] and the laboratory measurement of [64]. The surface pressure
is high on the windward face of the wavy surface, and is low around the crest and the leeward face, resulting in a form drag
[3].

We next examine the statistics of the turbulence velocity fluctuations and the Reynolds stress. We denote the phase aver-
age of a quantity f as hf i, and its fluctuation as f 0 ¼ f � hf i. We consider a wavy boundary of ak ¼ 0:1p, which is close to the
measurement condition of Hudson et al. [22]. As shown in Fig. 5(a), the Reynolds stress h�u0w0i is high above the wave
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Fig. 3. Surface pressure distribution in flow over a stationary wavy wall. In (a) and (b), the case of laminar flow over wavy wall with steepness ak ¼ 0:01 and
0.2 are plotted, respectively: —, current DNS result; –––, prediction of the linear theory by Benjamin [4]; and M, DNS result by Sullivan et al. [43]. In each
case, the phase of the wavy wall is indicated by the thick solid line at the bottom.
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Fig. 4. Surface pressure distribution in turbulent flow over a stationary wavy wall with steepness ak ¼ 0:05p: —, current DNS result; �, DNS result by De
Angelis et al. [10]; and j, experiment data by Zilker et al. [64]. The phase of the wavy wall is indicated by the thick solid line at the bottom.
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trough, but has small negative values on the windward face of the wave crest. Associated with the high Reynolds stress, the
root-mean-square (rms) value of the streamwise velocity fluctuation, u0rms, is also high above the wave trough (Fig. 5(b)).
Fig. 5(c) shows that the value of w0rms reaches its maximum value above the windward face of the crest. The wave-coherent
distributions of turbulence statistics obtained in the present study agree with the measurement data of [22] (see their Figs. 6
and 9). For example, they showed that the Reynolds stress has a maximum value of 1.66 around ðx; zÞ=k ¼ ð0:53;0:05Þ and a
minimum value of about �0.2 on the windward face, and in the present study the maximum is 1.64 at ðx; zÞ=k ¼ ð0:56;0:05Þ
and a minimum value of �0.3 on the windward face (Fig. 5(a)). The value and location for the maximum u0rms and w0rms ob-
tained from the present simulation also agree with those from [22] (Fig. 5(b) and (c)).
3.3. Surface waves

3.3.1. Comparison with theoretical two-dimensional wave solutions
In this subsection, theoretical solutions for three types of two-dimensional water waves are used to test the free surface

simulation capability of the present method. The simulation of linear viscous wave provides a test for the viscous terms in
Eqs. (17)–(20); the capillary wave case tests the surface tension condition in Eq. (17); and the Stokes wave case tests the
nonlinear KBC and DBC.

In this subsection, we use a to denote wave amplitude, k for wavelength, k ¼ 2p=k for wavenumber, T for wave period,
x ¼ 2p=T for angular frequency, and c for wave phase speed. For all of the test cases here, we set k to be 2p and the size
of the computational domain to be ðLx;HÞ ¼ ð2p;3:5Þ. Since H > k=2, the deep water condition is satisfied.

(i) Linear viscous wave:
From Lamb [25], we consider a linear wave with viscous effect:
gðx; z; tÞ ¼ a0 exp �2mk2t
� �

sinðkxþxtÞ;

u/ðx; z; tÞ ¼ �xa0 exp kz� 2mk2t
� �

sinðkxþxtÞ;

w/ðx; z; tÞ ¼ xa0 exp kz� 2mk2t
� �

cosðkxþxtÞ;

umðx; z; tÞ ¼ 2mkba0 exp bz� 2mk2t
� �

sinðkxþ bzþxtÞ½

� cosðkxþ bzþxtÞ�;
wmðx; z; tÞ ¼ �2mk2a0 exp bz� 2mk2t

� �
sinðkxþ bzþxtÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð53Þ

where ðu/;w/Þ and ðum;wmÞ are respectively the potential and viscous parts of the wave orbital velocity; and
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x=2m

p
is the depth dependence coefficient for the viscous part of the velocity. The dispersion relationship gives
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Fig. 5. Turbulence statistics in flow over stationary wavy wall with steepness ak ¼ 0:1p: (a) Reynolds stress, h�u0w0i; (b) root-mean-square value of
streamwise velocity fluctuation, u0rms; and (c) root-mean-square value of vertical velocity fluctuation, w0rms . For each quantity, the corresponding maximum
value obtained in the experiment of Hudson et al. [22], maxexp, is given in the figure and its location is indicated by �.
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkþ ck3

q
. We choose a0k ¼ 0:01; Fr2 ¼ c2=ðg=kÞ ¼ 1; We ¼ ðqc2=kÞ=c ¼ 1, and Re ¼ ðc=kÞ=m ¼ 500. For com-

parison, an additional case with Re ¼ 50 is also studied.

(ii) Capillary wave:

We test capillary waves based on Crapper’s solution [8]. In the frame traveling with the wave phase speed, the general
form of Crapper’s wave is
x
k ¼

/
ck� 2

p
Ae�2pw=ck sinð2p/=ckÞ

1þA2e�4pw=ckþ2Ae�2pw=ck cosð2p/=ckÞ
;

y
k ¼

w
ck� 2

p
1þAe�2pw=ck cosð2p/=ckÞ

1þA2e�4pw=ckþ2Ae�2pw=ck cosð2p/=ckÞ
:

8><
>: ð54Þ
Here, / and w are the potential function and the stream function of the wave, respectively; A ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðakÞ2=16

q
� 1

� �
ðakÞ; and the wave phase speed satisfies c ¼

ffiffiffiffiffiffiffiffiffiffiffi
kc=q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� A2Þ=ð1þ A2Þ

q
. The surface elevation

is obtained by substituting w ¼ 0 into the above general formula. The /ðx; zÞ and wðx; zÞ are then solved by using the
Newton–Raphson iteration. Velocity is calculated as ðu;wÞ ¼ ð@/=@x; @/=@zÞ. We choose ak ¼ 0:1; Fr2 ¼ c2=ðg=kÞ ¼
1;We ¼ ðqc2=kÞ=c ¼ 1, and Re ¼ ðc=kÞ=m ¼ 3162.
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(iii) High-order Stokes wave:
We consider the Stokes wave [41], for which the solution was extended to high order by Schwartz [37] using computer
calculation. In the present study, by following [14], we directly solve the nonlinear equations associated with the map-
ping function in [37] (see their Eq. (2.6)) by using Newton iteration. We choose ak ¼ 0:1; Fr2 ¼
c2=ðg=kÞ ¼ 1;We ¼ ðqc2=kÞ=c ¼ 1, and Re ¼ ðc=kÞ=m ¼ 500.

Figs. 6 and 7 show the test results of the above three wave cases. Fig. 6 shows the evolution of the amplitude of the linear
viscous wave. Because of the viscous dissipation, the wave decays in time. For Re ¼ 500, our simulation result agrees well
with the theory of [25] (Eq. 53). When the Reynolds number reduces to Re ¼ 50, the wave decays faster than that for
Re ¼ 500, and the current simulation result agrees with Eq. (53) but with small difference, which is as expected because
in [25] it is assumed Re	 1.

Fig. 7(a) shows the surface profiles of the capillary wave and the Stokes wave. For ak ¼ 0:1, the wave nonlinearity is non-
negligible. For the capillary wave, the wave trough is sharper than the crest [8]; on the contrary, for the Stokes wave the crest
is sharper than the trough [25]. The wave profiles obtained by the present method agree well with the theoretical solutions
for both the capillary and Stokes waves, which can also be seen from the small difference between the simulation results and
the theoretical solutions shown in Fig. 7(b).

Similar to Section 3.1, we also perform convergence test for the above three water wave cases. We choose three different
grid resolutions: 32� 160; 32� 80, and 32� 40. We calculate the numerical error in the surface elevation g. Table 3 shows
the error and convergence rate. For all the wave cases, second-order accuracy is obtained by the present method.

We remark that the present scheme is for flows with moderate surface deformation. Although an overall second order
scheme is used, increasing the amplitude or the propagation speed of the surface deformation would usually lead to a de-
creased accuracy in the global solver. For example, our numerical experience shows that the order of accuracy reduces to
about 1.5 if the wave steepness exceeds ak ¼ 0:25. For ak < 0:2, a second order accuracy can be obtained.

3.3.2. Comparison with crescent wave results
Next, we test the present method using the problem of crescent wave, which is generated from an initially disturbed

Stokes wave due to nonlinear wave interaction and free surface instability. Such processes pose a great challenge to the
numerical simulation in terms of the accuracy of free surface treatment [50]. We consider the L2 type instability [27]. Our
simulation starts with a plane-progressive Stokes wave, which has amplitude a, wavenumber k, and crest located at x ¼ 0
at t ¼ 0. Initially a three-dimensional perturbation is introduced with the surface elevation g� and velocity potential /� given
as [27,51]
Fig. 6.
theoret
g� ¼ �a sin kxx cos kyy;

/� ¼ � �a
ðk2

xþk2
y Þ

1=4 cos kxx cos kyy exp½ðk2
x þ k2

yÞ
1=2z�:

(
ð55Þ
Here, � measures the amplitude of the perturbation; ðkx; kyÞ ¼ ðkþm;nÞ, where m and n are the streamwise and spanwise
perturbation wavenumbers.

We match the simulation parameters with those in [51]. We set k ¼ 1 and a ¼ 0:33 for the Stokes wave. For the initial
perturbation, we set � ¼ 0:16; m ¼ 0:5, and n ¼ 1:23. We choose Fr2 ¼ c2=ðg=kÞ ¼ 1; We ¼ ðqc2=kÞ=c ¼ 1, and
Re ¼ ðc=kÞ=m ¼ 1000. A computational domain of size ðLx; Ly;HÞ ¼ ð4p;4p=1:23;2pÞ with a 128� 128� 97 grid is used.
The grid is clustered in the z-direction, with Dzmin ¼ 0:026 near the free surface and Dzmax ¼ 0:1 in the bulk flow.
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Decay of the linear viscous wave. For Re ¼ 500: —, current DNS result; �, theoretical prediction by Eq. (53). For Re ¼ 50: –––, current DNS result; M,
ical prediction by Eq. (53). Here a0 is the initial wave amplitude. The vertical axis is plotted in logarithmic scale.
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Table 3
Convergence tests of various waves for different spatial resolutions with a fixed Courant number of 0.5.

Wave type Grid resolution Convergence rate m
(1) 32� 160 (2) 32� 80 (3) 32� 40

Linear viscous wave �s
2;1 ¼ 2:2e� 5 �s

3;2 ¼ 7:8e� 5 1.8

Capillary wave �s
2;1 ¼ 1:1e� 3 �s

3;2 ¼ 5:5e� 3 2.3

Stokes wave �s
2;1 ¼ 3:4e� 3 �s

3;2 ¼ 1:5e� 2 2.2
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Fig. 8 shows the nonlinear development of the L2 type crescent wave. Initially, the surface is close to the Stokes wave
shape with small perturbations at the crests (Fig. 8(a)). At t ¼ 3:17T (where T is the period of the Stokes wave), the crests
become sharper and the crescent shape of the waves is observed (Fig. 8(b)). For t > 4T , as the edges of the crescent lines
extend more in the �x-direction and the crests become steeper, the semi-circular sharp crescent crests are well-formed
(Fig. 8(c) and (d)). The above development process agrees well with the result of the mixed-Eulerian–Lagrangian (MEL) sim-
ulation based on the high-order boundary-element method presented in Ref. [51] (as shown in their Fig. 11).

Fig. 9 shows the surface elevation contours at t ¼ 4:34T . The spanwise shift of the crescents on successive wave crests
[42], which are thus staggered, is shown clearly. For example, at x 
 2, the center of the crescent is located at y ¼ �2:55
(i.e. half-width of the perturbation); at x 
 9, the center of the crescent shifts to y ¼ 0 and �5:11.

Fig. 10 shows the streamwise surface profile along y ¼ 0 at t ¼ 4:34T . As a result of the crescent shift, the wave crest at
x 
 2 is apparently lower than that at x 
 9. Comparison shows that our simulation result agrees well with previous exper-
imental, theoretical, and numerical studies [27,42,51].

3.4. Interaction of vortex pair with free surface

Next, we examine the interaction of vortices with the free surface. We consider a two-dimensional vortex pair raising to
the free surface [2,32]. We use a computational domain of size ðLx;HÞ ¼ ð6:0;6:0Þ. A pair of counter-rotating vortices are ini-
tially located at ðx0; z0Þ ¼ ð�l0=2;�h0Þ ¼ ð�0:5;�3:0Þ (where l0 is the distance between the vortex cores, and h0 is their depth
under the undisturbed free surface), with the circulation C0 ¼ 1:0 and the radius of vortex core r0 ¼ 0:25. The initial flow
field is created using a Lamb vortex solution inside the vortex core and the potential flow solution outside [32].



Fig. 8. Free-surface pattern during the nonlinear development of crescent wave from disturbed steep Stokes wave at t=T ¼ (a) 0, (b) 3.17, (c) 4.96, and (d)
5.15. Here T is the period of the original Stokes wave.
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We set Fr2 ¼ C2
0=ðgl3

0Þ ¼ 0:02; Re ¼ C0=m ¼ 100, and We ¼ ðqC2
0Þ=ðcl0Þ ¼ 1. We use a grid resolution with 128 points in

the horizontal direction. In the vertical direction, the grid is clustered near the free surface; two grids of Nz ¼ 129 and 65
are used for comparison. For Nz ¼ 129, the minimum and maximum vertical grid sizes are Dzmin ¼ 0:004 and
Dzmax ¼ 0:084, respectively; for Nz ¼ 65, we have Dzmin ¼ 0:009 and Dzmax ¼ 0:168. The timestep is Dt ¼ 0:0025.

The method developed in [62] (referred to as Z96) is used for comparison, which also employs a boundary-fitted grid with
fully nonlinear free-surface KBC and DBC. In Z96, a pseudo-spectral method and a second-order finite difference scheme are
used in the horizontal and vertical directions, respectively. The simulation is advanced in time by a second-order Runge–Kut-
ta scheme that is explicit (while in the present method, we treat the viscous terms semi-implicitly). The grids are evenly
distributed in both the horizontal and vertical directions (while in the present method, the grid is clustered vertically). Be-
cause Z96 uses equidistant grid in the z-direction, more grid points are needed to resolve the surface boundary layer. We use
Nz ¼ 513 and 129 for comparison, which correspond to Dz ¼ 0:012 and 0.047, respectively. A smaller timestep Dt ¼ 0:001 is
needed for Z96.
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Fig. 11 shows the results. Due to the symmetry of the problem, only half of the domain (x > 0) is plotted. When the vortex
pair approaches the surface, the surface between the vortices is pushed up by the upwelling flow; meanwhile, the surface on
the two sides is rolled down, with surface vortices generated [2]. With the fine vertical grid resolutions, the results of the
present method and Z96 agree with each other, and the primary and secondary surface vortices are resolved in both cases
x
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η

Fig. 10. Streamwise profile of the L2 crescent wave on the plane y ¼ 0 at t=T ¼ 4:34: M, experimental data of Su [42]; �, result by the perturbation method
[27]; –––, numerical result by the MEL method [51]; and —, the current DNS result.
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(Fig. 11(a) and (b)). When we reduce the grid number, the present method with Nz ¼ 65 still captures the primary and sec-
ondary surface vortices (Fig. 11(c)), while Z96 with Nz ¼ 129 captures only the primary surface vortex roughly (Fig. 11(d)).

Fig. 11(e) and (f) compares the profiles of surface elevation g and the surface value of transverse vorticity xy between the
present method and Z96. The surface geometry is found to agree well for the grid resolutions considered. The surface dis-
tribution of xy is qualitatively consistent between the two methods; but the result of Z96 with Nz ¼ 129 shows apparent
deviation from other cases with much smaller magnitude.

The above test results indicate that the present method can resolve the near-surface flow structures adequately at rela-
tively low computational cost compared with Z96. This feature is as expected because of the different treatment in the z-
direction discretization.
3.5. Interaction of turbulence with free surface

Finally, we discuss the interaction of a deformable surface with turbulence. As a canonical problem, isotropic and homo-
geneous turbulence is generated by a linear forcing method in the bulk flow and is transported toward the free surface (see
[18] for details). We use a computational domain of size ðLx; Ly;HÞ ¼ ð2p;2p;5pÞ and a 128� 128� 349 grid. The grid is clus-
tered in the z-direction with Dzmin ¼ 0:0025 near the free surface and Dzmax ¼ 0:049 in the bulk flow.

For the analysis of turbulence statistics in this subsection, we define ~z as the signed distance from the free surface (~z < 0
below the free surface) [19]. For a variable f ðx; y; z; tÞ, its mean value �f ð~zÞ is defined as the average over the plane of constant ~z
and over time, and its fluctuation is obtained as f 0 ¼ f � �f .

In the near surface region (at ~z ¼ �p=4), the rms value of horizontal velocity fluctuations is u0rms ¼ 0:090 and the Taylor
scale is LT ¼ 0:339. Based on u0rms and LT , we have ReT ¼ u0rmsLT=m ¼ 30:39; Fr2 ¼ u02rms=ðgLTÞ ¼ 0:02, and
We ¼ qu02rmsLT=c ¼ 0:11. A snapshot of the simulation result is shown in Fig. 12.

Figs. 13–16 show the results. As turbulence eddies raise up, they distort the free surface and generate splats (upwellings),
anti-splats (downwellings), dimples, and scars (see e.g. the review by Ref. [35]). Fig. 13 shows the effect of a splat on the
deformation of the free surface. At the beginning of the splat event (Fig. 13(a)), the free surface is pushed up by the upwelling
flow at the splat core. Due to the blockage effect of the surface, fluid particles diverge and travel along the surface radially
(Fig. 13(b)). Some distance away, at the location where the radial velocity is maximum and the pressure is lowered, the sur-
face is depressed to form a low-elevation ring (Fig. 13(c)). This ring-like wave propagates away from the splat when time
goes on (Fig. 13(d) and (e)), with the wave amplitude decreasing because of dissipation and the spreading of wave energy
over a larger annular area (Fig. 13(f)).
Fig. 12. Snapshot of a homogenous turbulence field underneath a free surface. Contours of surface elevation g is shown. Three-dimensional velocity vectors
ðu; v ;wÞ are plotted in the bulk flow for every 4 grid points. Only the near-surface region of the computational domain is plotted.



Fig. 13. Evolution of the free surface when a splat happens: (a) t ¼ 247, (b) t ¼ 248, (c) t ¼ 250, (d) t ¼ 252, (e) t ¼ 255, and (f) t ¼ 257. Contours of
elevation g are plotted on the surface. The vectors of ðu; vÞ are also plotted for every six grid points.
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Different from wall-bounded turbulence, in free-surface turbulence there exist vortices that connect to the surface, e.g.
vortices O1—O5 in Fig. 14. Their connections to the surface are indicated by the surface dimples and the vortical motions
of the fluids, as shown in Fig. 14(a). These surface-connected vortices are often located in the anti-splat regions, which
are indicated by the negative surface divergence shown in Fig. 14(b). As shown in Fig. 14(c), these surface-connected vortices
are perpendicular to the free surface and are mainly along the z-direction, resulting in the strong vertical vorticity xz at the
free surface (Fig. 14(a)).

During the interaction of the aforementioned turbulence structures with the free surface, surface waves (e.g. the one
propagates away from a splat shown in Fig. 13) and surface roughnesses (e.g. the dimples shown in Fig. 14) are formed. These
surface features have different frequency–wavenumber characteristics. As shown in Fig. 15, the potential energy is concen-
trated on two ridges in the spectrum, one with relatively high frequency and the other with low frequency. The former
coincides with the wave dispersion relationship (the dashed line in Fig. 15), and the latter is associated with the
turbulence-induced surface roughness [19].

Fig. 16 shows the vertical profiles of the rms velocity and vorticity fluctuations. Near ~z ¼ 0, the vertical motion w0rms is
restrained and kinetic energy is redistributed to the horizontal directions to increase u0rms (Fig. 16(a)). Fig. 16(b) shows that
towards the surface, ðx0zÞrms decreases gradually. The value of ðx0xÞrms, on the other hand, remains high until ~z 
 �0:1. As ~z
further approaches zero, ðx0xÞrms first decreases rapidly [49], reaches the minimum value of 0.2 at ~z 
 �0:005, and then in-
creases to about 0.5 at ~z ¼ 0 because of the horizontal vorticity generated by the curved surface (cf. Fig. 11). Fig. 16 shows
that the present method resolves the near-surface variation of the profiles, which is important for the statistical study of
free-surface turbulence. More analysis on the turbulence statistics near the surface is given [19].

The numerical capability demonstrated in this section, together with those shown in Sections 3.3.1 and 3.3.2, provides a
useful tool for the study of the complex interaction between turbulent flows and surface waves. Fig. 17 shows such a sim-
ulation example, in which a surface wavefield interacts with a counter-propagating turbulent shear flow underneath it. The
waves are distorted by the turbulence, and the turbulence is affected by the wave modulation. Simulation-based study of
turbulence and surface wave interaction using the present method is a subject of our ongoing research and will be reported
in the future.



Fig. 14. Snapshot of instantaneous vortices near the free surface. The surface-connected vortices O1—O5 are indicated. Contours of the vertical vorticity xz

and the surface divergence @u=@xþ @v=@y are plotted in (a) and (b), respectively. In (b), the velocity vectors ðu;vÞ are also plotted for every four grid points.
In (c), the vortices are represented by the iso-surface of k2 ¼ �1:2. Here k2 is the second largest eigenvalue of the tensor S2 þX2, where S and X are
respectively the symmetric and antisymmetric parts of the velocity gradient tensor ru.

Fig. 15. Frequency–wavenumber spectrum E/ of the surface elevation for the free surface interacting with homogeneous turbulence underneath it. The
spectrum is normalized by ðgrmsÞ

2 and is shown on logarithm scale. The wave dispersion relationship is indicated by –––.
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Fig. 16. Vertical profiles of (a) ðu0iÞrms=ðu0iÞrmsj~z¼�p=4 and (b) ðx0iÞrms=ðx0iÞrmsj~z¼�p=4 for the homogeneous turbulence underneath a free surface: —, u0rms; – �–,
w0rms; – ��–, ðx0xÞrms; and –––, ðx0zÞrms .

Fig. 17. Simulation result for the interaction of a surface wavefield with a counter-propagating turbulent shear flow underneath. Contours of the
streamwise velocity are shown on the wave surface and the vertical planes. The vertically clustered computational grid is also plotted on the ðy; zÞ-plane (for
better visualization, the grid lines are plotted for every three grid points in both the horizontal and vertical directions).
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4. Conclusions

In this paper, we present a numerical method for the simulation of laminar and turbulent flows with undulatory bound-
aries. A hybrid pseudo-spectral and finite difference scheme on a boundary-fitted grid is employed for spatial discretization.
Fully nonlinear kinematic and dynamic boundary conditions are applied at the free surface. The three-dimensional Navier–
Stokes equations are integrated in time by a fractional-step method with the boundary position tracked by a Runge–Kutta
scheme. The pressure field is solved from a nonlinear Poisson equation.

In addition to the methodology development, special attention is paid to the validation and application of the present
method. Extensive comparison with results in the literature is presented and the agreement is good. In particular, the sim-
ulations of flows with wavy boundaries and various surface waves validate the formulation and numerical implement of the
kinematic and dynamic boundary conditions at the undulatory surfaces. Simulation of the crescent wave demonstrates the
capability of the present method for capturing the nonlinear wave interaction and free surface instability. Comparison with
Z96 [62] for the simulation of vortex and free surface interaction shows the accuracy of the present method for resolving
near-surface flow structures.

Finally, the present method is applied to the problem of turbulence and free surface interaction. The result shows that
both the instantaneous and the statistical features of the turbulence structures in the near-surface region are well resolved.
The interaction between these structures and the free surface results in characteristic surface features including waves,
splats, anti-splats, scars, and dimples. Direct observation and statistical analysis indicate that the present method adequately
captures the details of the turbulence and free surface interaction.
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The basic solver of viscous flows with undulatory boundaries presented in this paper provides a building block for the
development of solvers for two-fluid computation with undulatory interface. In a companion paper [56], we discuss the cou-
pling of the DNS discussed in this paper with potential flow based wave simulation for the study of wind–wave interaction,
and the coupling of the DNS of one fluid with the DNS of another fluid for the study of interfacial viscous effects.
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