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a b s t r a c t

We extend the direct numerical simulation (DNS) capability developed in [D. Yang, L. Shen,
Simulation of viscous flows with undulatory boundaries: Part I. Basic solver, J. Comput.
Phys. (submitted for publication) ] to the simulation of two-fluid interaction with deform-
able interface. Two approaches are used to couple the DNS of one fluid with the simulation
of another fluid. In the first, the DNS is coupled with a potential-flow based wave solver
that uses a high-order spectral (HOS) method. This coupled method is applied to simulate
the interaction of turbulent wind with surface waves, including single wave train and
broadband wavefield. Validation with previous theoretical and experimental studies shows
the accuracy and efficiency of this coupled DNS-HOS method for capturing the essential
physics of wind–wave interaction. In the second approach, both of the fluids are simulated
by the DNS and are coupled by an efficient iterative scheme, in which the continuity of
velocity and the balance of stress are enforced at the interface. The performance of this
coupled DNS–DNS method is demonstrated and validated by several test cases including:
interfacial wave between two viscous fluids, water surface wave over highly viscous mud
flow with interfacial wave, and interaction of two-phase vortex pairs with a deformable
interface. Comparison with existing theoretical and numerical results confirms the accu-
racy of this coupled DNS–DNS method. Finally, this method is applied to study the interac-
tion of air and water turbulence. The nonlinear development of interfacial wave by the
excitation of the air and water turbulence, and the wave effect on the instantaneous and
statistical characteristics of the turbulence are elucidated.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Many environmental fluid mechanics problems involve viscous flows interacting with other flows at deformable inter-
faces. Take wind–wave interaction as an example. As winds blow over water waves, the turbulent windfield is affected
by both the kinematic constraint of the alternative concave and convex wave surface and the dynamic distortion by the wave
orbital motion [4,39,55,56]. Meanwhile, the wave dynamics is influenced by the wind input mainly through the pressure
forcing at the water surface [27,52]. For a mechanistic study of the fundamental physics of wind–wave interaction, it is desir-
able to develop a numerical tool that is capable of capturing the two-way coupling between the turbulent wind boundary
layer and the nonlinear waves.

In the present paper, we investigate the dynamic coupling of the viscous flow solver developed in Yang and Shen [57]
(hereinafter referred to as P1) with another flow solver at a deformable interface. In P1, we developed a method for the sim-
ulation of Navier–Stokes equations on boundary-fitted grid using an algebraic mapping. The grid follows the curvature of the
. All rights reserved.
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undulatory boundaries with fine resolution near the boundaries to resolve the boundary layers adequately. Both the top and
bottom boundaries can be undulatory. While other boundary conditions can be applied at the top and bottom surfaces, we
consider a mostly general situation: Neumann conditions with prescribed surface pressure and shear stress at the top
boundary that can be used to simulate free-surface flows, and Dirichlet conditions with given surface geometry and surface
velocity at the bottom undulatory boundary that can be used to simulate flows such as winds over waves. The method devel-
oped in P1 serves as a basic solver, which we use in the present paper to combine with other flow solvers to investigate the
multi-fluids flows with deformable undulatory interfaces.

We first consider the coupling of the viscous flow solver with a potential-flow based wave solver to investigate the wind–
wave interaction problem. For the waves, we use a high-order spectral (HOS) method [16] that was developed based on the
Zakharov formulation [58] and mode-coupling using a pseudo-spectral method. The HOS method is capable of accurately
simulating non-breaking surface waves to high orders of wave nonlinearity perturbation [35]. Our scheme for the coupling
between wind turbulence and water wave simulations is built on the specific physics of the problem. The air is much lighter
than the water, and the air flow sees the water wave surface as a moving wall (see e.g. [12,30]). Meanwhile, the waves evolve
subject to the wind forcing, which is mainly through the wave-phase-coherent air pressure applied at the wave surface (see
e.g. [46,56]). Therefore, we use a fractional-step method that has alternating prescriptions of surface geometry and velocity
for the wind simulation from the wave simulation, and surface pressure for the latter from the former. In our study, this
numerical method is applied to situations of winds over monochromatic wave trains as well as over irregular wavefields
with broadband wave spectra.

While the above approach captures the essential dynamics of wave nonlinear interaction and evolution, the viscous as-
pect of the waterside motion is left out. For some other applications such as the vortex dynamics (see e.g. [13,1,7,9]), turbu-
lence transport across the air–sea interface (see e.g. [30,25]), and wind-induce surface drift (see e.g. [54]), we further
consider the coupling of two layers of viscous flows with an undulatory interface, each using the solver of P1 as the building
block. At the deformable interface, the continuity of velocity and the balance of stress are enforced alternatingly between the
two regions through an efficient iterative coupling scheme. Due to the complexity associated with the grid mapping, special
care is needed in the momentum equation solver and the treatment of the kinematic and dynamic boundary conditions at
the interface.

We remark that in this study we consider the basic flow solver using DNS only. For the application to more realistic prob-
lems, large-eddy simulation (LES) can be used, which has been facilitated by the recent developments in subgrid-scale stress
and wall function models (see e.g. [6,26,17,2]; also see the review by [8]). Here, we focus on the development of basic numer-
ical coupling scheme, and we limit our discussion to DNS.

This paper is organized as follows. Section 2 presents the coupled DNS-HOS method and demonstrates its application to
wind–wave interaction simulation. Section 3 discusses the coupled DNS–DNS method and documents the test cases of two
viscous fluids interaction. Finally, conclusions are given in Section 4.

2. Coupling with potential flow wave simulation

To study the interaction between wind turbulence and dynamically evolving surface waves, we couple the DNS method
developed in P1 with the potential-flow based wave solver, the HOS method. Numerical details of this coupled method are
presented in this section.

2.1. Brief overview of HOS method

The HOS method [16] solves the potential flow wave problem using the Zakharov formulation [58]. The wave motion is
described by the surface elevation g and the surface potential Us, which is defined as Us = U(x,y,z = g(x,y, t), t) with U being
the velocity potential. Here, x and y are horizontal, and z is vertical with z = 0 being the mean level of the wave surface. The
kinematic and dynamic boundary conditions at the wave surface are written as
gt þrhg � rhU
s � ð1þrhg � rhgÞUzðx; y;g; tÞ ¼ 0; ð1Þ

Us
t þ ggþ 1

2
rhU

s � rhU
s � 1

2
ð1þrhg � rhgÞU2

z ðx; y;g; tÞ ¼ DU �
Pa

qw
: ð2Þ
Here, rh = (@/@x,@/@y) is the horizontal gradient; g is the gravitational acceleration; qw is the density of water; DU is the
wave dissipation (typical models include U multiplied by a negative coefficient [53] and eddy viscosity model [49]); Pa is
the air pressure at the wave surface; and the subscripts ‘t’ and ‘z’ denote the partial derivatives with respect to time and ver-
tical coordinate z, respectively.

Using a perturbation series of U with respect to wave steepness to order M and the Taylor series expansion about the
mean water level z = 0 to the corresponding order,
Uðx; y; z; tÞ ¼
XM

m¼1

UðmÞðx; y; z; tÞ; ð3Þ
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Usðx; y; tÞ ¼
XM

m¼1

XM�m

‘¼0

g‘

‘!

@‘UðmÞ

@z‘

�����
z¼0

ð4Þ
and an eigenfunction expansion of each U(m) with N modes,
UðmÞðx; y; z; tÞ ¼
XN

n¼1

UðmÞn ðtÞWnðx; y; zÞ; z 6 0; ð5Þ
Eqs. (1) and (2) are rewritten as [16]
@g
@t
¼ �rhg � rhU

s þ ð1þrhg � rhgÞ �
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m¼1
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: ð7Þ
In this paper, we consider deep water waves, for which the eigenfunction W in Eq. (5) is
Wnðx; y; zÞ ¼ expðjknjzþ ıkn � xÞ; ð8Þ
where kn = (kxn,kyn) is the wavenumber vector and ı ¼
ffiffiffiffiffiffiffi
�1
p

.
In the horizontal directions, periodic boundary conditions are applied. The HOS method uses a Fourier-series-based pseu-

do-spectral method for the spatial discretization. A fourth-order Runge–Kutta (RK4) scheme is used to advance Eqs. (6) and
(7) in time. Complete review of the mathematical formulation, numerical scheme, and validation of the HOS method is pro-
vided in [16] and [35].

2.2. Coupling scheme

The DNS is dynamically coupled with the HOS simulation with two-way feedbacks. The focus of our study is on wind tur-
bulence over water waves. We note that the density ratio between water and air is large and thus the wind sees the water
surface as a moving wavy wall [12,30]. We also note that the wind forcing on the wave evolution is mainly through the form
drag induced by Pa [46,56]. Therefore, at each timestep of the simulation, the wave simulation provides the surface geometry
and velocity as Dirichlet boundary conditions for the wind simulation, and the latter provides Pa to the former as the wind
forcing (Eq. (7)).

The coupling is performed using a fractional-step method as shown in Fig. 1(a). Because of the large density ratio between
water and air, the time scale for the wave to evolve under the wind forcing is much larger than the advection and turnover
time scales of the turbulent eddies [4]. Moreover, the HOS method is explicit in time advancing and the DNS is semi-implicit.
Therefore, we let HOS simulation advance from timestep (n) to (n + 1) first. With the new surface elevation g(n+1), the grid
mapping for the DNS is performed. The surface values of the velocity (us,vs,ws) in the DNS obtains from the HOS simulation
result as
uðnþ1Þ
s ¼ @U

s

@x

ðnþ1Þ

� @g
@x

ðnþ1Þ@U
@z

����
ðnþ1Þ

z¼g
; ð9Þ

v ðnþ1Þ
s ¼ @U

s

@y

ðnþ1Þ

� @g
@y

ðnþ1Þ@U
@z

����
ðnþ1Þ

z¼g
; ð10Þ

wðnþ1Þ
s ¼ @U

@z

����
ðnþ1Þ

z¼g
; ð11Þ
where oU/@z is calculated as (from Eqs. (3)–(5); see [16])
@U
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����
z¼g
¼
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The DNS is then advanced from timestep (n) to (n + 1) by the schemes discussed in P1.
We note that in theory multiple iterations are desirable in the coupling of air and water motions in the advancement of

each timestep. However, Refs. [32,18,30,25] showed that with one iteration per timestep, the simulation of gas–liquid cou-
pled turbulent flows provides satisfactory results. For the wind–wave interaction problem studied here, the momentum
transfer between air and water happens on a time scale that is much larger than the eddy turnover time in turbulence. There-
fore, with the small timestep values constrained by the Courant condition, the error of time integration is small and has neg-
ligible effect on the flow physics with one iteration.



Fig. 1. Illustration of DNS–HOS coupled simulation of the interaction between wind turbulence and water wavefield. Coupling scheme is shown in
(a). Simulation examples for wind turbulence over a single wave train and a broadband wavefield are shown in (b) and (c), respectively. In (b) and (c),
contours of streamwise velocity are plotted on the two vertical planes and contours of air pressure are plotted on the wave surface.

D. Yang, L. Shen / Journal of Computational Physics 230 (2011) 5510–5531 5513
2.3. Summary of the procedure

The solution procedure of the present coupled DNS-HOS method is summarized as follows:

(i) Update the surface elevation g and surface potential Us from timestep (n) to (n + 1) by integrating Eqs. (6) and (7) in
time using the RK4 scheme.

(ii) Calculate the wave surface orbital velocity uðnþ1Þ
s based on Eqs. (9)–(11).

(iii) Calculate the grid mapping for the DNS based on g(n+1).
(iv) Perform the DNS for the air turbulence on the g(n+1)-based grid subject to the Dirichlet velocity boundary condition

uðnþ1Þ
s . Details of the DNS method are given in P1.

After step (iv), the values of Pðnþ1Þ
a and airside velocity uðnþ1Þ

a are obtained, and both the wind and wave fields are advanced
to timestep (n + 1). Steps (i)–(iv) are then repeated for the next timestep and the simulation continues.

2.4. Test results

2.4.1. Growth of single wave train under wind forcing
We first examine the growth of a single wave train under wind forcing, which is of fundamental importance to the study

of wind-wave evolution. As a canonical problem, turbulent Couette flow of air over water wave is simulated (Fig. 1(b))
[46,56]. For the air turbulence simulation, the size of the computational domain is ðLx; Ly;HÞ ¼ ð2p;1:5p;pÞ ¼ ð4k;3k;2kÞ,
where k is the wavelength. The Reynolds number based on k and wind friction velocity u⁄ is Re⁄ = u⁄k/ma = 283, where m is
the kinematic viscosity and the subscript ‘a’ denotes the air. The water-to-air density ratio is 828. We use a
128 � 128 � 129 grid. The grid is uniformly spaced in the horizontal directions. Here and hereafter, in order to resolve
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Fig. 2. Evolution of wave amplitude under wind forcing. The evolution of exponentially growing wave amplitude is denoted by lines: —, c/u⁄ = 2; ---, c/
u⁄ = 5, and - �-, c/u⁄ = 10. The simulation result is denoted by open symbols: h, c/u⁄ = 2;4, c/u⁄ = 5, and �, c/u⁄ = 10. The vertical axis is plotted in logarithmic
scale.

Table 1
Form drag Fp and growth rate parameter b of water wave under wind forcing.

Wave age (c/u⁄) Form drag (Fp) Growth rate parameter (b)

2 0.175 35.0
5 0.245 49.0

10 0.090 17.9
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the boundary layer, the grid is clustered in the vertical direction unless otherwise indicated. For the simulations in this sec-
tion and in Section 2.4.2, the vertical grid has the size Dz = 0.002 near the bottom and top boundaries and Dz = 0.047 in the
middle of the channel, which correspond to 0.42 and 8.45 in wall units, respectively. In the present study the surface wave is
progressive, for which the wave phase propagates at the rate of wave phase speed c (defined as the ratio of the wavelength k
to the wave period T [11]). In the present study, three wave phase speeds c = 2u⁄, 5u⁄ and 10u⁄ are investigated, which belong
to the slow wave condition where the momentum transfer from wind to wave is important [4]. The ratio c/u⁄, called the
wave age, is an important parameter of wind–wave interaction [37,4,56]. The choice of these parameter values is explained
and validated in [55,56].

Previous experimental and theoretical studies showed that slow waves grow under wind forcing mainly through the form
drag (see the review [4]). In the present study, we start our simulation with an initial wave steepness ak = 0.1 (where a is the
wave amplitude and k = 2p/k is the wavenumber) and record the temporal growth of the wave (Fig. 2). Meanwhile, from the
air pressure distribution on the wave surface, the dimensionless form drag per unit area is quantified as [56]
Fp ¼
1
k

Z k

0

Pa

qau2
�

dg
dx

dx ð13Þ
and the wave growth rate parameter [36] obtains as
b ¼ 2Fp

ðakÞ2
: ð14Þ
Table 1 shows the averaged form drag and growth rate parameter obtained from our simulation. For all of the cases, the form
drag is positive, indicating the transfer of momentum from wind to water wave.

The fractional rate of wind energy input to wave per radian advance in phase is [27]
fwave ¼
1
xe

de
dt
¼ b

qa

qw

u�
c

� �2
; ð15Þ
where e = qwga2/2 is the density of wave energy, and x is the angular frequency of the wave, and qa is the density of air.
Comparison of the fwave values obtained by the present method with previous theory and measurements shows good agree-
ment (Fig. 3(c)).

The wind–wave generation theory of Miles [36] shows that the water wave grows exponentially under wind forcing,
which has been confirmed by laboratory experiments and field measurements (see the review by [27,4]). From Eq. (15)
one can obtain
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Fig. 3. Wind pressure forcing on a JONSWAP wavefield: (a) instantaneous air pressure distribution on an (x,z)-plane above the wave surface; (b) the wave
growth rate parameter b for different modes of the JONSWAP wavefield; and (c) the dependence of fwave (defined in Eq. (15)) on the reversed wave age u⁄/c
compared with the existing measurement data and theoretical prediction. In (c), the field measurement data compiled by [41] is denoted by �; the
theoretical prediction by [37] is denoted by —; result for the current single wave train case is denoted by N; and result for the current broadband case is
denoted by h.
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aðtÞ ¼ a0 exp
1
2
xb

qa

qw

u�
c

� �2
t

� �
; ð16Þ
where a0 is the wave amplitude at t = 0. Using the b values in Table 1, the exponential growth curves given by Eq. (16) are
plotted in Fig. 2. Fig. 2 also shows the evolution of wave amplitude directly from the simulation. Good agreement is obtained.

This test indicates the capability of the coupled DNS-HOS method for accurately simulating the wind–wave interaction
and providing quantifications of wind-wave evolution. More details of this aspect of results are reported in [31].

2.4.2. Interaction of wind turbulence with broadband water waves
Next, we examine the interaction of wind turbulence with a broadband water wavefield. The computational domain has

the size of ðLx; Ly;HÞ ¼ ð2p;1:5p;pÞ, and the grid resolution is 128 � 128 � 129. In the present paper, we limit the simulation
to DNS, with the understanding of the potential of extension to LES. Therefore, the Reynolds number is kept at the same rel-
atively low value as in Section 2.4.1, Re⁄ = u⁄k/ma = 283. The water-to-air density ratio is also 828.

The initial broadband wavefield satisfies the directional wave spectrum
S2DðkÞ ¼ SðjkjÞ 1
p
ðcos2 hDÞg1=2jkj�3=2

: ð17Þ
Here, k = (kx,ky) is the wavenumber vector as in Eq. (8), and hD = tan�1(ky/kx).
For S(jkj), we use the one-dimensional spectral function obtained during the Joint North Sea Wave Observation Project

(JONSWAP) [22]
SðjkjÞ ¼ a
g1=2jkj5=2 exp �5

4
kp

jkj

� 	2
" #

er; ð18Þ

r ¼ exp � 1
2r2

ffiffiffiffiffiffi
jkj
kp

s
� 1

 !22
4

3
5: ð19Þ



5516 D. Yang, L. Shen / Journal of Computational Physics 230 (2011) 5510–5531
Here, the subscript ‘p’ denotes the spectrum peak; and the constants a = 0.0121, e = 3.3, and
Fig. 4.
simulat
Normal
and ---
r ¼
0:07 jkj 6 kp;

0:09 jkj > kp:



ð20Þ
In our simulation, the JONSWAP wavefield has its dominant wave propagating in the +x-direction, the same as the mean
wind direction. The spectrum peak of the wave satisfies kp = 4 and cp/u⁄ = 12.3. Fig. 1(c) shows a snapshot of the coupled
wind turbulence and wavefield in this simulation.

Fig. 3(a) shows the air pressure distribution in a vertical (x,z)-plane above the JONSWAP wavefield. It shows that for the
wave crests, the air pressure is high on the windward face and low on the leeward face, resulting in a form drag and growth
of these waves. By applying the spectral analysis to the air pressure distribution and by calculating the corresponding form
drag, we obtain the growth rate parameter b for each wave mode. Fig. 3(b) shows the variation of b with k. To help under-
stand its behavior, the value of c/u⁄ at different k is also indicated on the top of Fig. 3(b). Near the peak wavenumber kp, the
value of b is small, indicating the slow growth of the dominant waves as they belong to the intermediate wave range
[4,46,56]. For k around 2kp, the wave age is around c/u⁄ = 8 (i.e., the wave age becomes younger), and b increases to reach
its maximum. As expected, short waves have higher growth rate than long waves [4].

Note that in Fig. 3(b), for waves near the spectrum tail (k > 4kp), their amplitude is much smaller. Although the values of c/
u⁄ for these waves fall into the slow wave range, their growth rate b does not show large values because of the sheltering
effect of the dominant waves on them. We remark that in this paper we use DNS and mainly focus on the discussion of
the coupling scheme. For the short waves, their scales resolvable are limited by the smallest turbulence eddies resolved
by DNS. LES with advanced wall-layer modeling is clearly desirable. This, however, goes beyond the scope of the present pa-
per. Here we focus on the waves with k < 4kp.

To validate our coupled DNS-HOS method, we compare the value of fwave (Eq. (15)) from our simulation with the field
measurement data compiled by [41] and the theoretical prediction by [37]. As shown in Fig. 3(c), good agreement is
obtained.

In the present simulation, the wavefield not only provides a complex boundary condition for the wind simulation, but
also evolves dynamically under the wind pressure forcing (referred to as two-way coupling). To further illustrate their inter-
action, we perform a comparison simulation with an identical setup, except that we turn off the pressure input in Eq. (7) so
that the JONSWAP wavefield evolves freely without the wind forcing (referred to as one-way coupling).

Fig. 4(a) and (b) show a snapshot of the wave surfaces obtained from the two-way and one-way coupling simulations,
respectively. Direct observation of the surface geometry indicates that with the wind forcing, the wave surface is rougher
than that in the one-way coupling case. This difference can be seen quantitatively from the one-dimensional wave spectrum
shown in Fig. 4(c). For the waves with the wavenumber higher than 1.5 kp, the energy spectral density obtained from the
two-way coupling simulation is appreciably larger than that from the one-way coupling simulation.

The results in this section show that the coupled DNS-HOS method can capture the essential physics in the interaction
between wind turbulence and broadband water waves. It can serve as a useful research tool for the mechanistic study of
wind–wave interaction, which is a subject of our ongoing research.
Illustration of the interaction between wind turbulence and broadband wavefield by the comparison between two-way and one-way coupled
ions. Shown in the left panel is a snapshot of the instantaneous wave surfaces obtained from (a) two-way and (b) one-way coupled simulations.
ized air pressure contours are plotted at the surfaces. Shown in the right panel is the one-dimensional wave spectrum: —, two-way coupled case;
, one-way coupled case.
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3. Coupling with another DNS

In Section 2, we have discussed the coupled DNS-HOS method for the study of wind–wave interaction, in which the
waterside fluid can be treated as inviscid and is simulated efficiently by the HOS wave solver. For some other applications,
the effect of viscosity needs to be considered for both fluids. For this purpose, a coupled DNS–DNS method is developed,
which is discussed in this section.

3.1. Numerical scheme

3.1.1. Formulation
As shown in Fig. 5, we consider the interaction between an upper layer of viscous fluid (denoted by the subscript ‘‘u’’) and

a lower layer of viscous fluid (denoted by the subscript ‘‘l’’), separated by a deformable interface. Each layer is simulated by
the method introduced in P1. Here we focus on the coupling at the interface z ¼ g ¼ gl ¼ �H0u.

At the interface, the velocity is continuous:
uu ¼ ul at z ¼ g: ð21Þ
For the stress balance, formulation for the lower layer is given by Eqs. (15w)–(19w) in P1 (hereinafter, the superscript ‘w’ de-
notes the equations in P1). Here we discuss the upper layer. The tangential stresses at the interface on the upper-layer side
are
rtijðnþ1Þ
u ¼ qumuCti

0 Cti
1
@uu

@f
þ Cti

2
@vu

@f
þ Cti

3
@uu

@n
þ Cti

4
@vu

@u
þ Cti

5
@uu

@u
þ Cti

5
@vu

@n
þ Cti

6
@wu

@n
þ Cti

7
@wu

@u

� 	� �ðnþ1Þ

z¼g
; for i ¼ 1;2;

ð22Þ
where
Ct1
0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g2

x þ g2
yÞð1þ g2

x Þ
q

;

Ct1
1 ¼ ð1þ g2

x þ g2
yÞð1þ g2

x Þ=ðgu þ HuÞ;

Ct1
2 ¼ ð1þ g2

x þ g2
yÞgxgy=ðgu þ HuÞ;

Ct1
3 ¼ �3gx � g3

x � gxg2
y ; Ct1
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x � gxg2

y ;

Ct1
5 ¼ �gy; Ct1

6 ¼ 1� g2
x ; Ct1

7 ¼ �gxgy;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð23Þ
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ
Fig. 5. Illustration of computational domain and geometrical variables in a two-layer viscous fluids coupled simulation.
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And the normal stress at the interface on the upper-layer side is
rnjðnþ1Þ
u ¼ qugg� pu þ Cn
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where
Cn
0 ¼ 2qumu=ð1þ g2
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yÞ; Cn

2 ¼ �ð1þ g2
x Þ;
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5 ¼ �gy:

(
ð26Þ
In Eqs. (22)–(26), the variables g, gu, and Hu are defined in Fig. 5, and the subscripts ‘x’ and ‘y’ denote partial derivatives.
In the simulation, for the intermediate velocities, Eq. (21) is used in the calculation of the Dirichlet condition of ûu

(Eq. (45w)), and Eqs. (22) and (25) are used in the calculation of the Neumann condition of ûl (Eq. (42w)).
Similar to the treatment in Eqs. (37w)–(39w), the terms in Eqs. (22) and (25) are decomposed into velocity related terms

and pseudo-pressure related terms (denoted by the superscripts ‘v’ and ‘}’, respectively):
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We remark that the velocity related terms dominate in Eqs. (27) and (28). For the pseudo-pressure related terms, the value of
}(n+1) is estimated by }(n+1) = 3}(n) � 3}(n�1) + }(n�2) + O(Dt3), as discussed in P1.

With the foregoing numerical treatment for the interfacial stresses, the momentum equations (Eq. (33w)) for the inter-
mediate velocities ûu and ûl can now be coupled and solved iteratively without solving the pressure Poisson equation
(Eq. (35w)) together. Eq. (35w) is solved afterwards outside the iteration. The computational cost is thus reduced. Further dis-
cussion is given in Section 3.1.2.

We remark that with the numerical framework developed in the present study, it is straightforward to implement the
coupling scheme for the transport of heat, chemicals, and contaminants across an interface. For example, the scalar concen-
tration and flux conditions across the interface can be implemented to study the transport of passive scalars in an air–water
coupled turbulent flow with a flat interface [30] and an interface with progressive surface waves.

3.1.2. Procedure
The solution procedure of the present coupled DNS–DNS method is summarized here. We remark that as defined before,

in the following discussion of this subsection: f(n) and f(n+1) denote the values at timestep (n) and (n + 1), respectively; for
timestep (n + 1), locations of the free surface and the interface are advanced by a second-order Runge–Kutta (RK2) scheme,
in which the variable after the first step is denoted by f ðnþ1Þ� ; after the second step, f(n+1) is obtained (see Section 2.3.2 in P1);
at each step of the RK2 scheme, the velocity field is solved by the fractional-step method, in which û denotes the interme-
diate-step velocity; during iterations, f[m] and f[m+1] denote the values for the previous and current iteration steps,
respectively.



D. Yang, L. Shen / Journal of Computational Physics 230 (2011) 5510–5531 5519
The solution procedure is summarized as follows:

(i) Update the surface elevation from gðnÞi to gðnþ1Þ�
i (i = u,l) based on Eqs. (25w) and (26w), and calculate the corresponding

Jacobian matrix Eq. (4w) for the algebraic mapping.
(ii) Solve Eq. (33w) for the upper- and lower-layer fluids iteratively:
Fig. 6.
couplin
bounda
(a) For the upper layer, solve û½mþ1�
u from Eq. (33w) subject to boundary conditions (37w)–(39w) and (45w). Details of

the solver are given in P1. In Eqs. (37w) and (38w), rt ijexternal = 0. In Eq. (45w),

ub ¼ û½m�l �
Dt
ql
r 3}ðnÞ � 3}ðn�1Þ þ }ðn�2Þ� 

at z ¼ gðnþ1Þ�
l : ð33Þ

(b) Calculate rtij½mþ1�
u based on Eq. (27).

(c) For the lower layer, solve û½mþ1�
l from Eq. (33w) subject to boundary conditions (37w)–(39w) and (45w). In Eqs. (37w)

and (38w), rtijexternal ¼ rtij½mþ1�
u .

e iteration steps (a)–(c) are repeated until the relative residual errors in Eqs. (21) and (16w) are less than 10�6. The
Th
velocities ûu and ûl are then obtained.

(iii) Solve }ðnþ1Þ�
u and }ðnþ1Þ�

l from Eq. (35w) subject to boundary conditions (47w) and (49w). Details of the solver are given in
P1. For the lower layer, the value of rnjexternal is calculated by Eq. (28); for the upper layer, rnjexternal = 0.

(iv) Update the velocity from ûi to uðnþ1Þ�
i (i = u, l) based on Eq. (30w).

(v) Apply the velocity continuity condition Eq. (21) to the upper layer. Apply the tangential stress balance condition Eqs.
(18w)–(20w) to calculate the velocity on the ghost point of the lower-layer above the interface (see the points Nz + 1
and Nz⁄ in Fig. 2 of P1).

(vi) Update the surface elevation from gðnþ1Þ�
i to gðnþ1Þ

i (i = u, l) based on Eqs. (27w) and (28w). Repeat steps (ii)–(v) to solve
for uðnþ1Þ

i and }
ðnþ1Þ
i (i = u, l).
Flow chart for the DNS–DNS coupled simulation: left panel, previously used coupling approach in the literature (see e.g. [32,25]); right panel, current
g approach. In each flow chart, the four major simulation steps (named as M1–M4) in terms of computational cost are indicated by boxes with thicker
ries. Here, the superscript ‘w’ denotes the equation in P1.
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After the foregoing steps (i)–(vi), the entire two-layer coupled simulation advances from timestep (n) to (n + 1).
We note that if the iteration in step (ii) is repeated only once, the current interfacial coupling approach becomes similar to

the alternating-advancing approach used in [32,18,30,25]. They showed that for gas–liquid coupled turbulent flow (with
large difference in density, qgas/qliquid � 10�3), the coupling scheme with one iteration per timestep can provide satisfactory
result. This is also the case for the wind–wave interaction problem discussed in Section 2. However, for the problems involv-
ing two fluids with comparable densities, e.g., interaction between water wave and mud flow (qwater/qmud = 0.58 	 0.95 [34])
and two-layer film flow during coating process (density ratio�1.0 [51,19,20]), the motions of the two fluids are strongly cou-
pled and iteration is thus desired (the effect of density ratio on the two-fluid interaction is discussed in Section 3.2.3).

As shown in Fig. 6, in the simulation there are four major steps in terms of computational cost: M1 and M3 that solve the
momentum equation for the upper- and lower-layer, respectively; and M2 and M4 that solve the pressure Poisson equation.
In the previous coupling approach (see e.g. [32,25]), the upper- and lower-layer flows are solved completely first and then
iterate with each other, so that M1–M4 are all involved during each iteration step (Fig. 6, left panel). Differently, the current
approach first solves the momentum equation of the two fluids iteratively; the pressure Poisson equation is solved only after
the iteration has converged. As a result, only M1 and M3 are now involved in the iteration (Fig. 6, right panel). The current
approach thus reduces the computational cost compared with the previous one. This low-cost feature is useful for the sta-
tistical study of two-fluid turbulence, which requires long simulation time for statistical convergence.

3.2. Test results

In this section, the performance of the coupled DNS–DNS method is tested by various laminar and turbulent two-fluid
flow problems with interfacial waves. Comparison with literature is performed for validation, and good agreement is ob-
tained. We note that the simulation of the onset of an instability such as the Rayleigh–Taylor instability would in general
be a good test for a two-fluid coupled method. However, the univalent mapping approach used in the present method im-
pedes such a simulation. Nevertheless, the testing results documented in this subsection provides adequate verification of
the present method.

3.2.1. Interfacial wave
We consider the two-dimensional Airy wave at the interface between two fluids, for which the solution by Hendrickson

[23] is used. It consists of an irrotational part and a rotational part. The irrotational part is described by the potential
functions
/u ¼ aA1eıð2px�xtÞe�2pz in the upper layer;
/l ¼ aA2eıð2px�xtÞe2pz in the lower layer:

(
ð34Þ
Here, ı ¼
ffiffiffiffiffiffiffi
�1
p

; a is the wave amplitude; and the wavelength of the interfacial wave is set to be k = 1 (i.e. k = 2p). The rota-
tional part of the solution is described by the stream functions
wu ¼ aA3eıð2px�xtÞe�2pk3z in the upper layer;
wl ¼ aA4eıð2px�xtÞe2pk4z in the lower layer;

(
ð35Þ
which satisfy the linearized Navier–Stokes equations
@wu
@t ¼ mur2wu in the upper layer;
@wl
@t ¼ mlr2wl in the lower layer:

(
ð36Þ
In Eq. (35), k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ıx=4p2mu

p
and k4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ıx=4p2ml

p
are complex variables.

Both the top boundary of the upper layer and the bottom boundary of the lower layer are slip free. By applying the kine-
matic boundary condition and enforcing velocity continuity and stress balance at the interface, the coefficients A1 through A4

obtain as
A1 ¼ ıx
2p

k3k4þk4þrqrmþrqrmk2
3�1þk3

ðk4þrqrmk3þrqrmþ1Þðk3�1Þ ;

A2 ¼ � ıx
2p

rqrmk3k4þrqrmk3þk2
4þ1þrqrmk4�rqrm

ðk4þrqrmk3þrqrmþ1Þðk4�1Þ ;

A3 ¼ x
p

k4þrqrm
ðk4þrqrmk3þrqrmþ1Þðk3�1Þ ;

A4 ¼ x
p

rqrmk3þ1
ðk4þrqrmk3þrqrmþ1Þðk4�1Þ :

8>>>>>>><
>>>>>>>:

ð37Þ
Here, rq = qu/ql and rm = mu/ml are respectively the ratios of density and kinematic viscosity between the upper and lower lay-
ers. The wave frequency x is given by the interfacial wave dispersion relationship [28]
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

1� rq

1þ rq
þ 8p3 c

g
1

1þ rq

s
; ð38Þ
where c is the surface tension.



Fig. 7. Velocity components in the two-phase interfacial wave problem: (a) u, and (b) w. Results from the current DNS are shown by the colored contours;
those from Eqs. (34) and (35) are shown by lines. The dashed contour lines represent negative values. The contour interval is 5e � 5. Result at t = 32T is
plotted, with T being the period of the interfacial wave.

Table 2
Convergence test of interfacial wave for different spatial resolution with a fixed Courant number of 0.5. Definitions of spatial
discretization error �s

i;j and convergence rate m are given in Section 3.1 of P1.

Grid resolution Convergence rate m
(1) 32 � 160 (2) 32 � 80 (3) 32 � 40

Error in g �s
2;1 ¼ 3:61e� 6 �s

3;2 ¼ 1:24e� 5 1.8
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In the test, we set ak ¼ 0:01; Lx ¼ Hu ¼ Hl ¼ 1; Fr2 ¼ c2=ðgkÞ ¼ 1:0;We ¼ ðqc2kÞ=c ¼ 1;Rel ¼ ck=ml ¼ 2000, rm = 10, and
rq = 0.001. Fig. 7 shows the simulation result. The velocity distribution in the lower layer is similar to those for the viscous
surface wave [28]; in the upper layer, the contours of w extend nearly vertically into the bulk region, while for u there exists
a shear, through which the bulk flow is driven by the interfacial wave. The comparison in Fig. 7 shows that our coupled DNS
result agrees well with the theoretical solution given by Eqs. 34, 35, 37.

Moreover, we perform spatial and temporal convergence tests by examining the interface deformation g in the same way
as in Section 3.3 of P1. For the spatial convergence test, we choose three grids with 32 � 40, 32 � 80, and 32 � 160 evenly
distributed points. For the temporal convergence test, we use a fixed spatial resolution of 32 � 80 and three timesteps of
Dt1 = 0.008, Dt2 = 0.01, and Dt3 = 0.12. A reference simulation with a fine timestep of Dt4 = 0.0008 is performed. As shown
in Tables 2 and 3, a second-order convergence rate is achieved in both space and time.

3.2.2. Water surface wave over highly viscous mud flow with interfacial wave
Next, we examine the interaction between surface waves and interfacial waves below, which has important geophysical

applications. One example is the damping of water surface waves by the mud flow at the bottom. Here we consider the
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Fig. 8. Decay of amplitude a for water surface wave propagating over a highly viscous mud layer: —, theoretical prediction of [10]; and h, current
simulation result.
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Fig. 9. Ratio of the interface wave amplitude jbj to the free-surface wave amplitude a in the problem of water surface wave propagating over a highly
viscous mud layer: —, theoretical prediction of [10]; and h, current simulation result.

Table 3
Convergence test of interfacial wave for different timesteps with a fixed spatial resolution 32 � 80. Dt4 = 0.0008. Definitions of temporal discretization error �t

i;j

and convergence rate n are given in Section 3.1 of P1.

Timestep Dt1 = 0.008 Dt2 = 0.01 Dt3 = 0.12 Convergence rate n

Error in g �t
1;4 ¼ 2:87e� 7 �t

2;4 ¼ 4:70e� 7 �t
3;4 ¼ 6:97e� 7 2.2
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model of Dalrymple and Liu [10], in which the interaction between the water surface wave and the interfacial wave at the
water–mud interface is solved analytically with the water and the mud being both treated as viscous fluids.

In the theory of [10], both the upper and lower layers of the fluids are assumed to satisfy the linearized two-dimensional
Navier–Stokes equations. The elevations of the water surface and the water–mud interface are respectively gu = aeı(kx�xt) and
gl = beı(kx�xt). Here the surface wave amplitude a and the angular frequency x are real and known; k = kR + ıkI is the wave-
number with the real part kR related to the wavelength by k = 2p/kR and the imaginary part kI indicating the damping rate of
the surface wave as it propagates; and the interfacial wave amplitude b is complex.

The solutions for ui, wi and pi (i = u, l) are assumed to have the form of
uiðx; z; tÞ ¼ UiðzÞeıðkx�xtÞ;

wiðx; z; tÞ ¼WiðzÞeıðkx�xtÞ;

piðx; z; tÞ ¼ PiðzÞeıðkx�xtÞ:

8><
>: ð39Þ
The solution of Wi(z) can be found in the form of
WuðzÞ ¼ A sinhðkzÞ þ B coshðkzÞ þ C exp½buðz� HuÞ� þ D expð�buzÞ; ð40Þ

WlðzÞ ¼ E sinh½kðHl þ zÞ� þ F cosh½kðHl þ zÞ� þ G sinh½blðHl þ zÞ� þ H cosh½blðHl þ zÞ�; ð41Þ
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where z = 0 is the mean interface level; bi ¼ k2 � ıxm�1
i ; and A–H are complex coefficients. By applying bottom, interfacial,

and free-surface boundary conditions, one can obtain ten equations (see Eqs. (13)–(16), (19), and (21)–(24) in [10]) after
some algebra. The ten equations are solved to obtain the ten unknowns, i.e., the velocity coefficients A–H, the interface dis-
placement b, and the wavenumber k, which are all complex.

In our test, we set kR ¼ 4; k ¼ p=2; Lx ¼ 2p; Hu ¼ 0:491; Hl ¼ 0:147; Fr2 ¼ c2=ðgkÞ ¼ 0:15; Reu ¼ ck=mu ¼ 11535:0;
Rel ¼ ck=ml ¼ 76:9; rm ¼ 6:7� 10�3; rq ¼ 0:73. We simulate the two-dimensional wave–mud interaction problem using a

grid of 32 � 120 points for the upper layer and 32 � 40 points for the lower layer. The grid is clustered in the vertical direc-
tion near the boundaries and interface, with Dzujmin = 0.001 and Dzujmax = 0.009 for water, and Dzljmin = 0.001 and
Dzljmax = 0.008 for mud. The initial amplitude of the surface wave is set to be a0 = 0.022.

When water wave propagates over a mud layer, an important phenomenon is that the water wave damps much faster
than over a rigid bottom. For the parameters chosen above, the theory of [10] predicts a temporal damping rate of fI =
ckI = 0.051, which is much larger than the value of fm = 2muk2 = 0.004 if only water viscosity is considered [28]. We perform
DNS using the aforementioned parameters. The temporal evolution of the surface wave amplitude shown in Fig. 8 indicates
that our simulation agrees with the theory of [10].

We next examine the wave amplitude ratio jbj/a, which is an important parameter quantifying the wave–mud
interaction [10]. Based on Ref. [10]’s solution, the parameters used in our simulation gives jbj/a = 0.063. Fig. 9 shows jbj/a
at different time of the simulation, which remains nearly constant in time and agrees well with the theoretical prediction
of [10].

We note that there are numerical oscillations in the results shown in Figs. 8 and 9. These oscillations are induced by the
standing waves on the free surface and the interface, the magnitude of which is at least one order smaller than that of the
dominant wave. Such standing waves are due to the approximations involved in the analytical solution, which is used as the
initial condition for the present simulation. They can be suppressed by the relaxation method discussed in [14,15,21]. Such
special numerical treatment is beyond the scope of the present study and would lengthen the discussion, and therefore is not
included in this paper.

Finally, Fig. 10 shows the profiles of the streamwise and vertical velocity magnitudes (juj, jwj) in both the upper and lower
layers. In the lower layer, juj increases monochromatically as the distance from the bottom increases. In the upper layer,
there is a local peak of juj near the interface, above which the value of juj first decreases slightly and then increases mono-
chromatically as the height increases. The magnitude of jwj, on the other hand, increases monochromatically from the bot-
tom of the lower layer to the surface of the upper layer. Comparison in Fig. 10 shows that the profiles obtained in our
simulation agree well with the prediction of [10].
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Fig. 10. Profiles of (a) streamwise velocity magnitude juj and (b) vertical velocity magnitude jwj at t = 6T in the problem of water surface wave propagating
over a highly viscous mud layer: �, theoretical prediction of [10]; and —, current simulation result.
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Fig. 11. Evolution of two counter-rotating vortex pairs when approaching the interface: t = 0.5, red; t = 1.0, green; t = 2.0, blue; t = 3.0, pink; t = 4.0, orange;
and t = 5.0, black. The contour lines of the transverse vorticity xy = ±4.0 are plotted for each time. Dashed contour lines indicate negative values. Only the
interface at t = 3.0 is plotted for illustration. Evolution of the interface elevation is shown in Fig. 12. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3.2.3. Interaction of two-phase vortex pairs with a deformable interface
Next, we consider the interaction of two vortex pairs with the interface between two layers of fluids. Initially, the inter-

face is flat, and there exist two pairs of counter-rotating vortices in the upper and lower layers that are mirror-imaged about
the interface. The simulation of the lower layer is the same as the single-phase simulation in Section 3.4 of P1, except for the
difference between the free surface in P1 and the interface here. For the upper layer simulation, we set rm = mu/ml = 10, rq = qu/
ql = 0.02; same domain size as that of the lower layer is used. For this two-dimensional problem, in both fluids a 256 � 129
grid is used, which is clustered vertically near the interface with the minimum and maximum grid spacing Dzmin = 0.005 and
Dzmax = 0.086, respectively.

For comparison, we perform a simulation with identical parameters using a level-set method (LSM), which treats the two
layers as a one-fluid system with varying density and viscosity [44]. The fluid interface is implicitly represented by a level-set
function /LS, which denotes the signed distance from the interface. In the LSM, /LS is advected by the flow and a reinitial-
ization procedure is performed to help preserve its property as the distance function (see e.g. [47]). For spatial discretization,
we use a second-order finite-difference scheme on a staggered grid. A 256 � 256 grid is used, which is uniformly spaced in
the horizontal direction, but clustered in the vertical direction with Dzmin = 0.006 near the interface and Dzmax = 0.186 in the
bulk flow. The time integration is realized through a second-order Runge–Kutta scheme, with the pressure obtained by a
projection method. Numerical details and validations of the current LSM approach can be found in [23,55].

Figs. 11–13 show the results. Fig. 11 shows the evolution of the vortex pairs in the two fluids. Each vortex pair move to-
wards the interface due to the self induction of the counter rotation. In the lower layer, the pair of vortices maintain their
relative position till t = 4.0 and start departing horizontally as they approach the interface [1]. The vortex pair in the upper
layer, on the other hand, are dissipated quickly and lose their strength after t = 1.0. After t = 4.0, interfacial vortices are gen-
erated in the upper layer because of the induction by the vortex pair in the lower layer.

During the above process, the interfacial deformation is dominated by the motion of the heavy fluid in the lower layer. As
shown in Fig. 12(a), at t = 2.0 the interface in the middle (x = 0) is pushed up by the upwelling flow between the vortices (due
to the symmetry of the problem as shown in Fig. 11, only half of the domain of x > 0 is plotted). As the vortices approach the
interface (t = 3.0), the interface is further pushed up in the middle, but is rolled downward on the outer sides of the vortices
to form a concave. At t = 3.5, the vortices depart from each other and the interface between them falls back; meanwhile, the
interface at jxj > 1.5 moves upward. The comparison of the present method and the LSM in Fig. 12(left) shows good
agreement.
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Fig. 12. Profiles of the interface elevation g (left panel) and the transverse vorticity xy (right panel) at t = : (a) 2.0, (b) 3.0, and (c) 3.5, during the interaction
of two vortex pairs with a deformable interface. Results from two different methods are compared: —, current simulation result; and —, simulation result by
a level-set method. Due to the symmetry of the problem as shown in Fig. 11, only half of the domain of x > 0 is plotted.
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Fig. 12 (right) shows the distribution of transverse vorticity xy at the interface. The present method provides consistent
vorticity distribution as the LSM does at t = 2.0 (Fig. 12(a)) and t = 3.0 (Fig. 12(b)). However, when the vortices get close to the
interface and the secondary vortices are generated (at t = 3.5 as shown in Fig. 12(c)), the present method shows larger surface
vorticity and more finely resolved secondary vortices than the LSM does.

The difference at t = 3.5 can also be seen from the vorticity contours shown in Fig. 13. In both simulations, the primary
vortex in the lower layer is clearly shown. The vortex in the upper layer, on the other hand, is dissipated quickly. In
Fig. 13(a), the secondary vortices (vortices S1–S3) at the interface in the lower layer are resolved by the present method.
In the result by the LSM (Fig. 13(b)), the strongest secondary vortex S1 is resolved, but the vortices S2 and S3 are not captured.
We remark that the surface profile with two depressed areas (named as ‘double scar’) shown in Fig. 12(c) and Fig. 13(a) has
also been observed in previous studies (see e.g. [38]). At the free surface the vorticity can be approximated as xy � �2jsus

[33,3], where js = g00/(1 + g02)(3/2) is the signed surface curvature and us is the surface tangential velocity. The changing sign of
the surface curvature around the double scar causes the changing sign of the surface vorticity, which can be seen clearly in
Fig. 12(c) and Fig. 13(a). Furthermore, in the present study the surface is considered to be clean (no surfactant). If there is
surfactant, the surface vorticity would be enhanced due to the shear stress associated with the unevenly distributed surfac-
tant [5,50]. Meanwhile, surfactant in general eradicates the spatial variation of the surface elevation; however, when the sur-
face tension is weak, the local large gradient of surfactant concentration may result in the steepening of the free surface and
generate a Reynolds ridge as discussed in the literature [43,1,24,42].

In summary, the comparison between the present method and the LSM shows consistent result for the interfacial defor-
mation. However, the present method captures the interfacial vortices with more details, while the LSM yields much
smoother results near the interface because of the Continuum Surface Force approach used in the interfacial jump conditions
[47,44,23]. This result supports the recent LSM development by using sharp interface treatment (e.g., [29] and [48], among
others), and indicates the importance of resolving the fine flow structure near the interface.

To examine the effect of density ratio on the two-fluid interaction, we also perform two additional simulations with iden-
tical setup except that the density ratio is reduced to rq = 0.001 and 0 (i.e. the case discussed in Section 3.4 of P1). Fig. 14
shows the comparison of the interfacial profiles of g and xy at t = 3.5 for rq = 0.02, 0.001, and 0. For the three cases
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considered here, the difference in g is small (Fig. 14(a)). The interfacial profile of xy, however, shows obvious difference be-
tween rq = 0.02 and 0. Because the upper-layer fluid is relatively heavier for rq = 0.02, the interface appears less slippery for
the lower-layer fluid than the free-slip one of rq = 0, resulting in negative xy (opposite to the primary vortex in the bulk flow
of the lower layer) at the interface between x = 0 and 1. This difference is similar to the difference between no-slip and free-
slip boundaries discussed in [42,45]. When rq decreases from 0.02 to 0.001, the distribution of xy becomes much closer to
that for rq = 0. For the case of small rq, the simplification of treating the upper layer as vacuum thus provides a good
approximation.
3.2.4. Interaction of air and water turbulence with deformable interface
After testing the DNS–DNS coupling for the laminar flow problems in Sections 3.2.1, 3.2.2, 3.2.3, we next investigate a

coupled air–water turbulent flow. As a canonical problem, an air–water Couette flow is simulated. The bottom of the water
domain is set to be no-slip and flat; the top boundary of the air domain is set to be flat and a constant shear stress is applied
on it. This flow was studied by [30,25] for the special situation of the air–water interface being flat. In the present simulation,
the interface is allowed to have deformation.

We match the simulation parameters with those in [30,25] except for the Froude number (in the present simulation,
Fr2 ¼ u2

�w=ðgHwÞ ¼ 3:45� 10�3, where u⁄w is the friction velocity on the waterside; in [30], Fr2 = 0 corresponding to a flat
interface). The air and water sub-domains have the size of ðLx; Ly;HÞ ¼ ð2p;p;1Þ. The air-to-water density ratio is rq = qa/
qw = 1.2 � 10�3 and the viscosity ratio is rm = ma/mw = 12.7. In this subsection, the subscripts ‘a’ and ‘w’ stand for the airside
and waterside, respectively. The Weber number is We ¼ qwu2

�wHw=c ¼ 2:69� 10�5. The friction Reynolds number on the
waterside is Re�w 
 u�wHw=mw ¼ 120. The friction Reynolds number on the airside is [30]
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We use a 128 � 128 � 129 grid for the air and water sub-domains. The grid is clustered in the z-direction near the interface
and the top and bottom boundaries, with Dzmin = 7.50 � 10�4 and Dzmax = 1.49 � 10�2. A convergence test in [30] using a
coarse 64 � 64 � 97 grid and a fine 256 � 256 � 256 grid shows that the current 128 � 128 � 129 grid is adequate and nec-
essary for the DNS.

We use the fully developed air and water turbulence field data from [30] as the initial condition for the current simula-
tion. The interface is initially flat. Because of the excitation by the turbulence from the waterside and the airside, the inter-
face deforms shortly after the simulation starts. Fig. 15 shows two typical development stages. At an early time
tþ ¼ tu2

�w=mw ¼ 2:4, small-scale interface deformations are generated (Fig. 15(a)). They consist of bumps and streaks, which
are mostly associated with the splats and streamwise vortices in the waterside turbulence (see e.g. Section 3.5 of P1). The
comparison between the interface elevation and the air pressure distribution on the interface shows no clear correlation,
suggesting that the role of air pressure in the interface deformation development is insignificant at this early stage. We re-
mark that the present problem is different from the wind-wave generation problem, in which the wind turbulence triggers
waves on initially calm water (see e.g. [40,36]).

As the interface continues to evolve, large-scale interfacial waves are generated (Fig. 15(b)). At t+ = 204.5 shown in the
figure, the dominant interfacial wave has wavenumber k = 4 in the x-direction. The air pressure distribution shows apparent
wave phase dependence, with high pressure on the windward side of the wave crest and low pressure on the leeward side.
Snapshots of instantaneous air–water interface at (a) t+ = 2.4 and (b) t+ = 204.5. On the left panel of each plot, the contours of surface elevation g are
at the interface; on the right panel, the contours of air pressure pa are shown at the interface.
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Fig. 16. Instantaneous vortical structures in air–water coupled Couette flow with interfacial waves. Airside vortices are plotted on the upper panel, and
waterside vortices are plotted on the lower panel. The mean flow is along the +x-direction in both fluids, and the interfacial waves propagate in the +x-
direction as well. The vortices are represented by the iso-surface of k2 = �0.8. Here k2 is the second largest eigenvalue of the tensor S2 + X2, where S and X
are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ru.
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This pressure difference results in appreciable flux of momentum and energy from the air turbulence to the waves. Note that
in Fig. 15(b), the small scale variation (with the scale of several grid points) of the surface pressure is not a sign of numerical
instability. They are caused by the small scale airside vortices near the interface.

Fig. 16 shows a snapshot of the vortical structures in air and water. On the airside, the distribution of the vortices depends
on the wave phase. Note that the interfacial wave has considerable transverse variation (Fig. 15(b)). As a result, the airside
vortices also have transverse variation and are more intense over large-amplitude wave surface, consistent with the discus-
sion in [55]. On the waterside, the vortices are mainly along the streamwise direction. Their sizes are larger compared with
those on the airside because of the smaller friction Reynolds number in water [30]. Meanwhile, the vortices on the waterside
do not show large transverse variation as on the airside. Such phenomenon is consistent with the simulation result of [30],
who showed that the waterside vortices are more persistent in their evolution. In the present deformable surface case, they
are less affected by the local interfacial wave. The airside vortices are swept over the surface rapidly and are strongly affected
by the disturbance induced by the interfacial wave.

The influence of the interfacial waves on the turbulence statistics is shown in Fig. 17 through the comparison with the
flat-interface results of [25]. For the current case with deformable interface, the mean value of a variable is obtained by aver-
aging over a plane of constant f and over time, where f is the vertical coordinate in the computational space (details of the
coordinate transformation is given in P1). In Fig. 17, �z denotes the mean physical height of the grid points with constant f.

Note that the visual discontinuity of the upper- and lower-layer profiles at the interface is because the variables are nor-
malized by the parameters in their own layer. Fig. 17(a) shows that the airside mean velocity in the present deformable
interface case is apparently smaller than that in the flat interface case, because of the extra momentum loss to the interfacial
wave; due to the continuity of velocity across the interface, the mean velocity on the waterside of the interface is also smaller
in the present simulation. The turbulence intensity q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02rms þ v 02rms þw02rms

p� 
is larger in the deformable interface case than in

the flat interface case (Fig. 17(b)) on both the airside and the waterside, because of the disturbance of the interfacial waves

on the turbulence field. Fig. 17(c) shows that the vorticity fluctuation intensity qx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02x;rms þx02y;rms þx02z;rms

q� �
is also larger

in the deformable interface case, especially in the near interface region of the airside.
The simulation result in this section shows that the present coupled DNS–DNS method captures the nonlinear develop-

ment of the interfacial wave. It can serve as a simulation tool for the study of interfacial wave phenomena in environmental
and engineering applications, e.g., small-scale wind–wave–water interaction and two-phase channel flows. This method
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resolves the wave-induced variation in the turbulence structures. It provides useful information for the mechanistic study of
two-fluid turbulence with deformable interface.
4. Conclusions

This paper extends the DNS method developed in [57] to the simulation of two-fluid flow with deformable interface of
finite amplitude. We have developed two coupled simulation methods aiming at different applications.

The first method is developed for the study of interaction between wind turbulence and water waves. For this application,
the waterside motion is treated as potential flow and is simulated by an efficient HOS method. The DNS of wind turbulence
and the HOS simulation of surface waves are coupled dynamically through a two-way feedback scheme. Validation is per-
formed by simulating wind turbulence over both single wave train and irregular wavefield with broadband spectrum. Com-
parison of wind pressure forcing and wave growth rate shows quantitative agreement with previous theory and
measurements. Results of the broadband wave case indicate that the coupled DNS–HOS method can serve as a useful tool
for the mechanistic study of the complex wind–wave interaction problem. We emphasize that extension of DNS to LES is
necessary for the study of more realistic problems, and the present paper serves as an initial step for the investigation of
some of the numerical coupling issues.

The second method is developed as a general simulation tool for the study of two viscous flows interaction with deform-
able interface. In this method, the motions for both of the fluids are calculated by the DNS method of P1. This coupled DNS–
DNS method, though computationally more expensive than the coupled DNS–HOS method, takes the viscosity of both fluids
into account and is able to study the interfacial vortex dynamics and turbulence transport. In this method, both the conti-
nuity of velocity and the balance of stress are enforced at the deformable interface through a modified iterative scheme,
which is computationally more efficient than those in the literature. Extensive comparison and validation are performed
for a series of test cases including two-phase interfacial wave, water surface wave over mud flow, and two-phase vortex pairs
interacting with deformable interface. Good agreement with previous theories and simulations are obtained. Particularly, the
result for the vortex pair case indicates the high accuracy of the current boundary-fitted method in resolving the interfacial
flow structures.

Finally, we apply the coupled DNS–DNS method to simulate the interaction of air and water turbulence. Finite amplitude
interfacial waves are generated in the interaction process. The interfacial deformation is found to develop nonlinearly with
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distinct features at different stages of evolution. Comparison with the flat interface case shows that the effect of interfacial
waves on the turbulence statistics is significant, which the present coupled DNS–DNS method can capture accurately.
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