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Direct numerical simulation of scalar transport
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The transport of passive scalars in turbulent flows over progressive water waves
is studied using direct numerical simulation. A combined pseudo-spectral and
finite-difference scheme on a wave-surface-fitted grid is used to simulate the
flow and scalar fields above the wave surface. Three representative wave ages (i.e.
wave-to-wind speed ratios) are considered, corresponding to slow, intermediate and
fast wind-waves, respectively. For each wave condition, four Schmidt numbers are
considered for the scalar transport. The presence of progressive surface waves is
found to induce significant wave-phase-correlated variation to the scalar field, with
the phase dependence varying with the wave age. The time- and plane-averaged
profiles of the scalar over waves of various ages exhibit similar vertical structures
as those found in turbulence over a flat wall, but with the von Kármán constant and
effective wave surface roughness for the mean scalar profile exhibiting considerable
variation with the wave age. The profiles of the root-mean-square scalar fluctuations
and the horizontal scalar flux exhibit good scaling in the viscous sublayer that agrees
with the scaling laws previously reported for flat-wall turbulence, but with noticeable
wave-induced variation in the viscous wall region. The profiles of the vertical scalar
flux in the viscous sublayer exhibit apparent discrepancies from the reported scaling
law for flat-wall turbulence, due to a negative vertical flux region above the windward
face of the wave crest. Direct observation and quadrant-based conditional averages
indicate that the wave-dependent distributions of the scalar fluctuations and fluxes are
highly correlated with the coherent vortical structures in the turbulence, which exhibit
clear wave-dependent characteristics in terms of both shape and preferential location.
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1. Introduction

The air–sea exchange of scalar quantities, such as water vapour and heat, near
the air–water interface plays a vital role in global and regional air–sea interactions
(Smith 1988; DeCosmo et al. 1996; Fairall et al. 1996; Edson et al. 2007). Turbulent
transport of scalars in the air above the sea surface is strongly affected by the
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DNS of scalar transport over waves 59

surface waves. The periodical surface curvatures and the motions of these waves
can induce considerable disturbance to the air turbulent flows near the wave surface,
affecting the transport of both momentum and scalars (Edson et al. 2007; Sullivan &
McWilliams 2010).

Various experimental studies have been conducted in the past several decades to
characterize the effect of sea-surface waves on air–sea scalar transport. For example,
Fairall et al. (1996), Bourassa, Vincent & Wood (1999) and Edson et al. (2004)
measured the bulk properties of the air–sea scalar exchange, and parameterized
the scalar flux profiles in terms of averaged air–sea interfacial properties such as
the scalar transfer coefficient, sea-surface scalar roughness length, and convective
scaling velocity. Edson et al. (2007) measured the velocity, temperature and relative
humidity in the marine atmospheric boundary layer (ABL) under low winds in the
CBLAST-LOW experiment. Based on the CBLAST-LOW data, Katsouvas, Helmis
& Wang (2007) performed quadrant analysis for the scalar and momentum fluxes.
Katul, Sempreviva & Cava (2008) analyzed the data from RASEX (Risø Air Sea
EXperiment) and developed a one-dimensional model for the temperature–humidity
covariance. Experimental studies of air–sea scalar transport have provided valuable
insights and parameterizations for modelling air–sea interactions.

In recent years, enabled by the continuous advancement of computer power,
numerical simulation has become a valuable tool for studying the fine-scale scalar
transport phenomena near the air–water interface. Modelling the air turbulence over
sea surfaces is challenging, primarily due to the difficulty associated with modelling
the effect of sea-surface waves. One approach is to approximate the marine ABL as
turbulence over a flat surface, with the wave effect parameterized as the sea-surface
roughness length (e.g. Charnock 1955; Fairall et al. 1996). However, accurately
parameterizing the sea-surface roughness is found to be quite challenging due to
the complexity in wind–wave interaction (e.g. Donelan 1990; Toba, Smith & Ebuchi
2001; Yang, Meneveau & Shen 2013). Instead, many previous numerical studies
attempted to directly simulate air turbulence over progressive surface waves, with the
instantaneous wave motions imposed in the simulation as bottom boundary conditions
(e.g. Sullivan, McWilliams & Moeng 2000; Sullivan & McWilliams 2002; Kihara
et al. 2007; Yang & Shen 2009, 2010; Druzhinin, Troitskayaa & Zilitinkevich 2016).
Most of these previous studies focused on the momentum transfer between the air
turbulence and the water waves. Sullivan & McWilliams (2002) and Druzhinin et al.
(2016) considered the temperature field in their simulations with a Prandtl number
of 0.7, corresponding to the ratio of kinematic viscosity to thermal diffusivity of the
air, and studied the effects of various stratification conditions (characterized by the
Richardson number) on the characteristics of the air turbulence. On the other hand, a
number of numerical studies have been performed focusing on the statistics of scalar
fluctuations over stationary wavy walls (e.g. Antonia & Kim 1991; Kawamura et al.
1998; Dellil, Azzi & Jubran 2004; Park, Choi & Suzuki 2004; Choi & Suzuki 2005;
Rossi 2010). These studies have shown significant effects of the stationary waves on
the characteristics of scalar transport, such as the surface scalar flux, the mean scalar
concentration, the scalar variance and the turbulent scalar fluxes. However, there is
still a lack of studies devoted to the mechanism of scalar transport in turbulence
over progressive surface waves, which is expected to be significantly different from
the cases with stationary wavy walls (Belcher & Hunt 1998; Sullivan & McWilliams
2010).

In this study, the direct numerical simulation (DNS) solver developed by Yang &
Shen (2011a) is adopted, which uses a boundary-fitted computational grid system
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60 D. Yang and L. Shen

that follows the instantaneous wave surface elevation and motions, allowing one to
resolve the details of the turbulent flow above and in the vicinity of the mobile wave
surface. In the present study, this DNS solver is further expanded by including a
scalar transport solver within the boundary-fitted spatial discretization framework, and
is used to simulate the transport of passive scalars in turbulent flows over progressive
surface waves. As in many recent numerical studies, a plane progressive surface wave
train is imposed at the bottom of the simulation domain (e.g. Sullivan et al. 2000,
2008; Sullivan & McWilliams 2002; Kihara et al. 2007; Yang & Shen 2009, 2010;
Hara & Sullivan 2015; Druzhinin et al. 2016). A relatively large wave steepness of
ak = 0.25 is considered, where a is the wave amplitude and k is the wavenumber.
To account for the nonlinearity associated with such a steep wave, a high-order
Stokes wave solution is used to prescribe the wave surface elevation and orbital
velocity. Three representative wave-to-wind speed ratios c/u∗ (also called the wave
age) are considered, including c/u∗ = 2 (slow waves), 14 (intermediate waves) and
25 (fast waves), where c is the wave phase speed and u∗ is the friction velocity of
the turbulence. In order to achieve the desired value for c/u∗, the turbulent flow is
driven by a constant streamwise stress applied at the top flat boundary, and the mean
flow has a Couette-flow-type of velocity profile, but with the mean velocity at the
top boundary varying for different wave conditions. The scalar transport is known
to be largely affected by the Schmidt number Sc = ν/D, where ν is the kinematic
viscosity and D is the scalar molecular diffusivity. For each wave condition, four
Schmidt numbers are considered, including Sc= 0.5, 1.0, 2.0 and 4.0. Based on the
DNS data, the effects of surface waves on the scalar transport are studied by various
statistical analysis techniques, including time and plane average, wave phase average,
quadrant analysis and conditional average. The correlations between coherent vortical
structures and turbulent scalar transport events are also studied by direct observation
of instantaneous snapshots and quadrant-based conditional averages.

The remainder of this paper is organized as follows. First, the mathematical
formulas and numerical schemes of the DNS solver are described in § 2. Then the
configurations of the simulation cases are given in § 3, together with some sample
results of the DNS. In § 4, various types of statistical analyses of the DNS data are
performed, and the effects of surface waves on the characteristics of flow structures
and turbulent scalar transport are discussed. Finally, conclusions are given in § 5.

2. Description of DNS

As shown in figure 1, this study uses DNS to examine the transport of passive
scalars in a three-dimensional stress-driven turbulent Couette flow over a plane
progressive surface wave train. The Cartesian coordinates are denoted as xi(i =
1, 2, 3)= (x, y, z), where x and y are the horizontal coordinates and z is the vertical
coordinate, with z = 0 being the mean elevation of the surface wave at the bottom
of the simulation domain; ui(i = 1, 2, 3) = (u, v, w) are the corresponding velocity
components in x-, y- and z-directions, respectively.

In the simulation, the flow is driven by a constant streamwise shear stress τx

prescribed on the rigid flat top boundary, which prescribes a fixed turbulence
friction velocity of u∗ = √τx/ρ, where ρ is the fluid density. The bottom of the
flow is bounded and distorted by a two-dimensional wave train that propagates in
the x-direction. This stress-driven Couette flow configuration has been used as a
canonical problem to study the surface water wave effect on turbulent air flows in
many previous numerical studies (e.g. Gent & Taylor 1976; Li, Xu & Taylor 2000;
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FIGURE 1. (Colour online) Sketch of the simulation configuration. A three-dimensional
turbulent Couette flow is driven by a constant shear stress τx applied at the top boundary,
and flows over a plane progressive surface wave train. The surface wave has a wavelength
λ and an amplitude a. The wave propagates in the x-direction with a phase speed c. The
passive scalar field θ is transported by the turbulent Couette flow, with Dirichlet boundary
conditions of θ = 0 and θ = 2 at the bottom and top boundaries, respectively.

Kihara et al. 2007; Yang & Shen 2009, 2010). A passive scalar θ is transported by
the turbulent flow, with a Dirichlet boundary condition of θ = 0 on the bottom wave
surface and θ = 2 on the top boundary. This configuration for θ results in θ ≈ 1 at
the centre of the simulation domain. We remark that in this canonical simulation
configuration, we set the passive scalar to have a smaller value near the wave surface
and a larger value near the upper boundary, similar to many previous numerical
studies (e.g. Dellil et al. 2004; Park et al. 2004; Rossi 2010). In some applications,
e.g. the moisture in the marine atmospheric boundary layer, the scalars have higher
concentrations near the wave surface. Because θ is assumed to be passive and its
governing equation is linear with respect to θ , the results reported in this study can
be converted to the reversed configuration with a larger scalar value near the wave
surface. We choose the current configuration as it allows us to compare the current
DNS results to the previously reported results of passive scalar transport in turbulent
boundary layers over flat and wavy boundaries.

In the DNS, the turbulent carrier flow is described by the three-dimensional
incompressible Navier–Stokes equations

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
=− 1

ρ

∂p
∂xi
+ ν ∂

2ui

∂xj∂xj
, (2.2)

where p is the pressure. The transport of the passive scalar θ(x, y, z, t) is governed by
a convection–diffusion equation

∂θ

∂t
+ ∂(θuj)

∂xj
=D

∂2θ

∂xj∂xj
. (2.3)

The effect of progressive surface waves on the turbulence is imposed through
a Dirichlet velocity boundary condition at the bottom wave surface, ui(z = η) =
(us, vs, ws), where η is the wave surface elevation and (us, vs, ws) are the wave
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62 D. Yang and L. Shen

surface orbital velocities. In this study, we use a high-order two-dimensional Stokes
wave solution to prescribe the motions of the plane-progressive surface wave train
(Stokes 1847),

η(x, y, t)=
N∑

n=1

(ak)n−1η(n)(x, y, t), (2.4)

us(x, y, t)=
N∑

n=1

(ak)n−1u(n)s (x, y, t), (2.5)

vs(x, y, t)= 0, (2.6)

ws(x, y, t)=
N∑

n=1

(ak)n−1w(n)
s (x, y, t), (2.7)

where the variables with superscript ‘(n)’ indicate the nth mode of the corresponding
wave quantity. In particular, following Dommermuth & Yue (1987), we directly solve
the nonlinear equations associated with the mapping function in Schwartz (1974) by
using Newton iteration up to a high order of N = 192. As a reference, the Stokes
solution up to the second order can be found in Dean & Dalrymple (1991). For the
purpose of defining some key parameters of the wave boundary conditions, in the
following equations only the leading order mode of the Stokes wave solution is given,
which is the same as the Airy wave solution and has been used in many prior DNS
studies (e.g. Sullivan et al. 2000, 2008; Kihara et al. 2007; Hara & Sullivan 2015;
Druzhinin et al. 2016):

η(1)(x, y, t)= a sin k(x− ct), (2.8)
u(1)s (x, y, t)= akc sin k(x− ct), (2.9)

v(1)s (x, y, t)= 0, (2.10)

w(1)
s (x, y, t)= akc cos k(x− ct). (2.11)

Here, a is the amplitude of the leading wave mode, k = 2π/λ is its wavenumber, λ
is its wavelength, and c is its phase speed.

We note that the current DNS solver can be dynamically coupled with another
solver for the water waves, allowing the simulation of turbulence with a dynamically
evolving wave field (Yang & Shen 2011b). Because this study focuses on understanding
the fundamental mechanisms of the surface wave effects on the passive scalar
transport, we choose to use the canonical configuration with a prescribed Stokes
wave boundary condition, which allows for a precise phase average based on the
periodic wave form and yields well-converged statistics for the flow and scalar
fields. Moreover, when a more realistic dynamically evolving wave field (either
monochromatic or broadband) is considered, a realistically high Reynolds number
should be considered in order to capture the interaction between turbulence and
surface waves over a wide range of scales, for which the flow and scalar fields have
to be simulated using wall-modelled large-eddy simulation (Yang et al. 2013; Yang,
Meneveau & Shen 2014a,b). These more realistic and complicated conditions go
beyond the scope of the current canonical study, but are worth considering in future
studies of scalar transport in turbulent wind over ocean waves.

To capture the surface wave effect on the scalar field, the DNS solver uses a
boundary-fitted coordinate system that follows the instantaneous deformation of the
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wave surface. The irregular wave surface-bounded domain in the physical space
(x, y, z, t) is transformed to a right rectangular prism in the computational space
(ξ , ψ, ζ , τ ) with the following algebraic mapping:

ξ = x, ψ = y, ζ = z− η(x, y, t)
H(x, y, t)

= z− η(x, y, t)
H − η(x, y, t)

, τ = t. (2.12a−d)

Here, the height of the physical domain, H(x, y, t), is decomposed into an average
height H and a wave induced variation −η(x, y, t). Similar to xi, the spatial
coordinates in the computational space can also be denoted using the index notation as
ξi(i= 1, 2, 3)= (ξ , ψ, ζ ).

The Jacobian matrix of the spatial coordinate transformation is

J =



∂ξ

∂x
∂ξ

∂y
∂ξ

∂z
∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
∂ζ

∂x
∂ζ

∂y
∂ζ

∂z

=


1 0 0
0 1 0

ζ − 1
H − η

∂η

∂x
ζ − 1
H − η

∂η

∂y
1

H − η

 . (2.13)

Because the wave surface oscillates in time, a transformation is also required for the
temporal derivative terms, i.e.

∂

∂t
= ∂

∂τ
+ ∂ζ
∂t

∂

∂ζ
, where

∂ζ

∂t
= ζ − 1

H − η
∂η

∂t
. (2.14)

By applying the chain rule together with (2.13) and (2.14), we write the governing
equations (2.1)–(2.3) in the wave-surface-fitted coordinates as

Jkj
∂uj

∂ξk
= 0, (2.15)

∂ui

∂τ
+ δj3

∂ζ

∂t
∂ui

∂ξj
+ Jkj

∂(uiuj)

∂ξk
=−Jki

ρ

∂p
∂ξk
+ νJnj

∂

∂ξn

(
Jkj
∂ui

∂ξk

)
, (2.16)

∂θ

∂τ
+ δj3

∂ζ

∂t
∂θ

∂ξj
+ Jkj

∂(θuj)

∂ξk
=DJnj

∂

∂ξn

(
Jkj
∂θ

∂ξk

)
, (2.17)

where J ij is the index notation of the matrix J and δij is the Kronecker delta. Note
that ui are the velocities in the physical space.

In DNS, equations (2.15)–(2.17) are discretized in the computational space
(ξ , ψ, ζ , τ ) and solved numerically. In particular, a Fourier-series-based pseudo-
spectral method is used in the (ξ , ψ)-plane, with evenly spaced collocated grid
points in both directions. The standard 2/3-rule is used for eliminating the aliasing
error. In the vertical direction, a second-order finite-difference method is used based
on a staggered ζ -grid. The vertical grid is clustered near the top boundary and
the bottom wave surface to provide adequate resolution for the boundary layers.
The governing equations are integrated in time with a fractional-step method. For
both (2.16) and (2.17), the nonlinear convection terms are advanced in time using
a second-order Adams–Bashforth scheme. In order to resolve the boundary layer
without requiring a significantly small timestep, a semi-implicit scheme is desired for
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64 D. Yang and L. Shen

time advancement of the viscous diffusion terms in (2.16) and (2.17). Due to the
coordinate transformation (2.12), in the computational space the Laplacian operator
in the diffusion terms becomes

∇2 = Jnj
∂

∂ξn

(
Jkj

∂

∂ξk

)
= ∂2

∂ξ 2
+ ∂2

∂ψ2
+ 2J31

∂2

∂ξ∂ζ
+ 2J32

∂2

∂ψ∂ζ︸ ︷︷ ︸
∇2
ξψ

+ (J2
31 + J2

32 + J2
33

) ∂2

∂ζ 2
+
(
∂2ζ

∂x2
+ ∂

2ζ

∂y2

)
∂

∂ζ︸ ︷︷ ︸
∇2
ζ

, (2.18)

where

∂2ζ

∂x2
= ζ − 1

H − η
∂2η

∂x2
+ 2(ζ − 1)
(H − η)2

(
∂η

∂x

)2

, (2.19)

∂2ζ

∂y2
= ζ − 1

H − η
∂2η

∂y2
+ 2(ζ − 1)
(H − η)2

(
∂η

∂y

)2

. (2.20)

In the Laplacian operator (2.18), the first part, ∇2
ξψ , involves derivatives with respect

to ξ and ψ , and is thus treated with the second-order Adams–Bashforth scheme;
the second part, ∇2

ζ , is treated semi-implicitly using the Crank–Nicolson scheme.
Note that if the Crank–Nicolson scheme is used for the entire diffusion term and
if the momentum equations are solved by the pseudo-spectral method, the presence
of the several Jacobian coefficients J ij in (2.18) would require (2.16) and (2.17) to
be solved iteratively. The use of the above hybrid scheme helps to avoid iteration,
and meanwhile keeps the dominant diffusion terms ν∇2

ζ ui and D∇2
ζ θ semi-implicit.

Compared with a pure explicit scheme, this hybrid scheme relaxes the numerical
stability constraint on the simulation timestep when using a refined vertical grid to
adequately resolve the boundary layer. For the velocity field, the incompressibility
constraint (2.15) is satisfied by constructing and solving a Poisson equation for the
pressure and then adding pressure correction terms to the velocity components. Note
that because of the non-constant coefficients in the Laplacian operator (2.18), the
pressure Poisson equation needs to be solved iteratively.

We also remark that while (2.2) and (2.3) are written in the conservative form, after
the coordinate transformation, (2.16) and (2.17) are in a weakly conservative form. A
strongly conservative form can be further derived by first dividing (2.16) and (2.17)
by the Jacobian and then rearranging all the terms into the forms of derivatives of the
primary variables with respect to the independent variables (ξ , ψ, ζ , τ ) (e.g. Vinokur
1974; Anderson, Tannehill & Pletcher 1984; Zang, Street & Koseff 1994; Sullivan
et al. 2000). Nevertheless, the above numerical scheme is found to provide accurate
results, especially for air flows over water waves, with relatively low computational
cost. Extensive validation and detailed discussion on the performance of the numerical
scheme can be found in Yang & Shen (2011a,b). Additional validations for turbulent
flows and scalar transport over a flat wall are given in appendix A.

3. Simulation configuration
For the simulations of turbulent flows over surface waves considered in this study,

the flow is driven by a constant shear stress τx applied on the top boundary of the
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DNS of scalar transport over waves 65

simulation domain. The Reynolds number based on the friction velocity u∗ =√τx/ρ
and half of the mean domain height δ = H/2 is Re∗ = u∗δ/ν = 445. To capture
the effect of surface waves on the turbulence transport of scalars, a computational
domain of

(
Lx, Ly,H

)= (4λ, 3λ, 2λ) is used, where the wavelength λ= δ. This domain
size has been found to be sufficiently large based on the test of two-point spatial
correlation (Yang & Shen 2009). The domain is transformed into the computational
space (ξ , ψ, ζ ) based on (2.12), and then discretized using 1923 grid points. In
particular, the grid points are evenly spaced in the ξ - and ψ-directions, providing
grid resolutions of 1ξ+ = 9.27 and 1ψ+ = 6.95, respectively (here the subscript ‘+’
denotes the length in wall unit, i.e. normalized by ν/u∗). In the vertical direction, the
grid points are clustered near the bottom and top boundaries with 1ζ+ = 0.4, and
become coarsely spaced towards the centre of the domain with 1ζ+ = 8.7.

Note that the Reynolds number considered in the current DNS study is lower
than those used in DNS studies of turbulence over a flat surface (e.g. Hoyas
& Jiménez 2006; Lee & Moser 2015) because of the additional complexity and
computational cost caused by the boundary-fitted grid and coordinate transformation,
but is higher than those used in many previous DNS studies of turbulence over
progressive and stationary waves, e.g. Re∗= 171 in De Angelis, Lombardi & Banerjee
(1997), Re∗ = 100 ∼ 164 in Sullivan et al. (2000) and Sullivan & McWilliams
(2002), Re∗ = 150 in Kihara et al. (2007), Re∗ = 283 in Yang & Shen (2010), and
Re∗ = 140 ∼ 325 in Druzhinin, Troitskaya & Zilitinkevich (2012) and Druzhinin
et al. (2016). Although limited to relatively low Reynolds numbers, DNS has been
found to be able to reproduce many key features of laboratory experiments and
field observations (Sullivan & McWilliams 2010). More importantly, DNS directly
resolves the flow and scalar transport in the near-surface region, where molecular
viscosity and diffusivity play an important role. Meirink & Makin (2000) solved
the Reynolds-averaged Navier–Stokes equations using a Dirichlet wave boundary
condition and a second-order closure of Craft & Launder (1996) that is valid in the
viscous sublayer, and reproduced the air flow over water waves measured by Stewart
(1970), suggesting the importance of capturing the viscous effect when modelling
wind–wave interaction (Sullivan & McWilliams 2010).

Because DNS usually uses relatively low Reynolds numbers to resolve all the
essential turbulence motions at different scales, the velocity and length scales
considered in the present and other similar studies in literature do not directly
match the real scales in wind over water waves. Nevertheless, DNS has been proven
to provide valuable insights for understanding the characteristics of wind turbulence
over waves. Moreover, previous studies have shown that the wave age, defined as the
ratio of the wave phase speed c to a characteristic wind velocity, is a key parameter
for the quantitative description of wind–wave interaction (see the reviews by Belcher
& Hunt 1998; Sullivan & McWilliams 2010). Typical choices of the characteristic
wind velocity include: (1) the wind friction velocity, u∗ (e.g. Belcher & Hunt 1998;
Sullivan et al. 2000; Kihara et al. 2007; Yang & Shen 2009, 2010); (2) the mean
wind velocity at a height proportional to the wavelength λ, e.g. Uλ at z= λ or Uλ/2
at z = λ/2 (e.g. Sullivan et al. 2000; Donelan et al. 2006); and (3) the mean wind
velocity at a fixed height above the mean wave surface regardless of the wavelength,
e.g. U10 at the 10 m height (see, e.g., Hristov, Miller & Friehe 2003; Donelan et al.
2006, among others). In this study, because the carrier flow is driven by a prescribed
stress τx that gives a constant friction velocity u∗, it is most convenient to define the
wave age as c/u∗.

To study the effect of surface wave motion on the scalar transport, three different
wave ages are considered, c/u∗ = 2, 14 and 25, corresponding to the young,
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66 D. Yang and L. Shen

Case Type c/u∗ κ z+0 B Sc κθ z+0,θ Bθ

S25 stationary 0 0.43 1.21 −0.44 0.5 0.48 1.22 −0.41
sinusoidal 1.0 0.48 2.09× 10−1 3.27
wave 2.0 0.48 1.54× 10−2 8.72

4.0 0.48 3.09× 10−4 17.01
W25C2 Stokes wave 2 0.39 2.31 −2.17 0.5 0.43 1.89 −1.46

1.0 0.42 4.69× 10−1 1.79
2.0 0.41 6.35× 10−2 6.64
4.0 0.41 3.27× 10−3 14.08

W25C14 Stokes wave 14 0.39 0.22 3.84 0.5 0.46 7.06× 10−1 0.75
1.0 0.46 8.49× 10−2 5.42
2.0 0.45 3.46× 10−3 12.63
4.0 0.44 2.82× 10−5 23.97

W25C25 Stokes wave 25 0.27 0.55 2.24 0.5 0.35 1.76 −1.60
1.0 0.33 3.91× 10−1 2.81
2.0 0.31 4.52× 10−2 9.85
4.0 0.29 2.14× 10−3 21.40

TABLE 1. List of DNS cases for turbulent flow over stationary and Stokes waves with
steepness ak= 0.25 and Reynolds number Re∗= 445. In the table, the parameters without
and with subscript ‘θ ’ are for mean velocity and scalar profiles, respectively. In particular,
κ is the von Kármán constant, z+0 is the effective wave surface roughness, and B is the
profile offset. Detailed discussions of the mean profiles are given in § 4.3.

intermediate and mature stages of wind-generated waves, respectively (Belcher &
Hunt 1998). Moreover, if c = 0, the bottom boundary becomes a stationary wavy
wall without orbital motion, which has often been used as a reference case for
comparison in many prior numerical studies of flows over surface waves. All of the
four wave cases have a wave steepness of ak=0.25. The wave cases considered in the
present study are summarized in table 1. For each wave case, four Schmidt numbers,
Sc= 0.5, 1.0, 2.0 and 4.0, are considered in the DNS for the scalar transport. Figure 2
shows some sample DNS results for the instantaneous scalar concentration field in
turbulence over the four different types of waves with Sc= 1.0. Apparent differences
in the instantaneous scalar field can be observed among the stationary (S25), slow
(W25C2) and intermediate (W25C14) wave cases, while the difference between the
intermediate and fast (W25C25) wave cases is less obvious. To quantitatively study
the effect of surface waves on scalar transport, in the next section various statistical
analyses are performed for the scalar field. For data sampling, in all the cases the
simulations were carried out for approximately 34 000 viscous time units (i.e. tu2

∗/ν).
Three-dimensional snapshots of instantaneous velocity and scalar fields were outputted
for every 20 viscous time units starting from approximately 26 000 viscous time units,
with totally 400 instantaneous snapshots sampled for the statistical analyses.

4. Results
4.1. Phase-averaged scalar field

To quantify the effect of surface waves on the turbulent flow and scalar fields, a
triple decomposition is applied to analyze the instantaneous quantities. Specifically, an
instantaneous quantity f (x, y, z, t) obtained from the DNS can be decomposed as (e.g.
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FIGURE 2. (Colour online) Three-dimensional illustration of instantaneous scalar field
in turbulence over surface waves for various wave cases: (a) S25 (stationary wave); (b)
W25C2 (slow wave); (c) W25C14 (intermediate wave); and (d) W25C25 (fast wave). For
all cases, the contours of the instantaneous scalar concentration θ for Sc= 1.0 are shown
on the two representative vertical planes. The wave surface is shaded blue for illustrative
purposes. In (b–d), the waves propagate in the x-direction.

Sullivan et al. 2000; Kihara et al. 2007; Yang & Shen 2010)

f (x, y, z, t)= 〈 f 〉(x, z)+ f ′(x, y, z, t)= f (ζ )+ f̃ (x, z)+ f ′(x, y, z, t), (4.1)

where 〈 f 〉 denotes the phase average, f denotes the time and ζ -plane average over
all (ξ , ψ, τ) in the computational space (hereinafter simply referred to as the time
and plane average), f̃ denotes the wave-induced variation of f , and f ′ denotes the
instantaneous fluctuation. In particular, the phase average 〈 f 〉 is calculated by shifting
the instantaneous quantity f to the same phase with respect to the surface wave, then
averaging in time and along the spanwise direction, and lastly further averaging among
the four streamwise waves (Yang & Shen 2010). The wave-induced variation is then
obtained by subtracting from the phase average the time and plane average at the
corresponding ζ level in the computational space, i.e. f̃ (x, z) = 〈 f 〉(x, z) − f (ζ ). As
a result of the averaging among the four different waves, only one wavelength is
necessary when presenting 〈 f 〉 and f̃ . Moreover, when presenting the vertical profile of
the time and plane average f , the ζ coordinate is converted to the physical coordinate
above the wave surface as z = Hζ (for a flat-surface case, z = z). Hereinafter, for
simplification f is also referred to as the mean of f .

Note that to calculate the mean, one could also choose to first interpolate the
physical quantities obtained from the boundary-fitted DNS to a regular Cartesian
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grid and then average on planes of constant z. However, by doing so the flow
region below the height of the wave crest would be excluded (e.g. Rutgersson &
Sullivan 2005). As shown in the following subsections, because the current DNS
uses boundary-fitted grid with the ζ -plane nearly parallel to the wave surface near
the lower boundary (see figure 29a in appendix B), calculating f by averaging on
planes of constant ζ allows us to capture the linear profiles of mean velocity and
scalar in the thin viscous sublayer very close to the wave surface. Meanwhile, in the
log-law region the difference of the mean profiles obtained by averaging on z planes
and ζ planes is found to be small because the ζ plane becomes flatter as ζ increases
(see more information in appendix B). Moreover, defining and calculating f based
on ζ allows us to have meaningful values for the wave-correlated variation f̃ in the
entire phase-averaged domain, including the region above the trough but below the
elevation of the crest. Similar triple decomposition approaches as (4.1) have been
used in previous studies of turbulent flows over waves (e.g. Sullivan et al. 2000;
Sullivan & McWilliams 2002; Kihara et al. 2007; Hara & Sullivan 2015).

Figure 3 shows the phase-averaged streamlines and scalar concentration 〈θ〉 for
various wave cases. The streamlines are plotted based on the velocity vector (〈u〉 −
c, 〈w〉), representing the mean flow pattern in the wave-following reference frame.
In case S25 (figure 3a), due to the large amplitude of the stationary wavy surface,
the phase-averaged flow separates on the leeward face of the crest and reattaches on
the windward face of the succeeding crest. The streamlines in the separation zone
exhibit a closed-circle pattern, which does not extend vertically beyond the elevation
of the wave crest. Above the separation zone, the streamlines are nearly horizontal,
with a slightly concave curvature above the reattachment region. The distribution of
the phase-averaged scalar concentration 〈θ〉 exhibits correlation with the streamline
patterns (figure 3b). Near the wavy surface, the low-〈θ〉 region is lifted up in the
separation zone between the crest and the succeeding trough (i.e. roughly between
x/λ=0.1 and 0.5) due to the mean upward flow motion associated with the separation,
resulting in a reduced vertical gradient for 〈θ〉; near the reattachment zone (i.e. around
x/λ= 0.7), the mean flow sweeps towards the windward face of the succeeding crest,
resulting in a strong near-surface shear layer (from x/λ = 0.6 to 1.0) with a high
vertical gradient for both 〈u〉 and 〈θ〉. These wave-phase-dependent modulations of
the near-surface distribution of 〈θ〉 are revisited when the Sherwood number Sh is
discussed in the next section (§ 4.2). Above the elevation of the crest, the contour
lines of 〈θ〉 become nearly horizontal, consistent with the horizontal streamlines at
these high elevations. Similar near-surface modulation of 〈θ〉 has also been reported
in the DNS study by Rossi (2010) for transport of a scalar with Sc=0.7 in a turbulent
channel flow over a stationary wavy surface with steepness ak=0.314. Figure 4 shows
a corresponding case obtained from our DNS (with ak= 0.314 and Re∗= 283), which
yields reasonably good agreement with the DNS results from Rossi (2010).

In case W25C2 (figure 3c,d), the wave surface has non-zero orbital velocities
(us, ws) that induce additional distortion to the flow field above it (in addition to
the boundary curvature effect as in case S25). In the reference frame that moves
with the wave at its phase speed c, near the surface the mean streamwise velocity
〈u〉 − c is in the −x-direction. As 〈u〉 increases with height, 〈u〉 − c becomes zero at
the height indicated by the dash-dot line in figure 3(c), and becomes positive further
above. The layer where 〈u〉 − c = 0, known as the ‘critical layer’, was found to
play a crucial role in the momentum transfer between the turbulence and the surface
waves (e.g. Miles 1957; Lighthill 1962; Sullivan et al. 2000; Hristov et al. 2003).
Around the critical layer, the streamlines form a closed-circle pattern, named as the
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FIGURE 3. (Colour online) Phase-averaged (a,c,e,g) streamlines and (b,d, f,h) scalar
concentration 〈θ〉 (for Sc = 1.0) for various wave cases: (a,b) S25; (c,d) W25C2; (e, f )
W25C14; and (g,h) W25C25. The streamlines are based on (〈u〉 − c, 〈w〉), i.e. in the
reference frame moving with the wave phase speed c. The red dash-dot line indicates
the location of the critical layer where 〈u〉 − c= 0 (it is located higher than z/λ= 0.3 in
case W25C25 and thus is not shown in (g)). The contour interval for 〈θ〉 is 0.1.

‘cat’s eye’ by Lighthill (1962). For case W25C2, the cat’s-eye streamlines are located
right above the wave trough. Note that the cat’s eyes pattern in figure 3(c) does not
imply the occurrence of mean flow separation above the wave trough (see Banner &
Melville 1976; Gent & Taylor 1977). Unlike in the flow over a stationary wave, in
which a negative surface stress (i.e. reversed near-surface flow) would indicate a flow
separation, in flows over progressive waves the near-surface flow is in the reversed
direction in the wave-following reference frame everywhere above the wave surface.
Yang & Shen (2010) used the local relative velocity (with respect to the local surface
orbital velocity) and found occasional instantaneous flow separations occur on the
leeward face of slow progressive waves, while the mean flow was found to remain
unseparated. Similarly, in case W25C2 of the current DNS the mean flow is found
to be unseparated. Compared with the mean flow separation bubble in case S25, in
case W25C2 the cat’s-eye streamline pattern extends further upwards and upstream,
As a result, the low-〈θ〉 region above the wave trough is lifted further upwards, and
this effect also extends further upstream when compared with case S25.
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FIGURE 4. Comparison of phase-averaged scalar concentration 〈θ〉 with Sc = 0.7 over
a stationary wavy wall with steepness ak = 0.314. Profiles of 〈θ〉 at x/λ = 0.1, 0.3,
0.5, and 0.7 are plotted: ◦, DNS of channel flow by Rossi (2010);−−−, current DNS with
Re∗ = 283. The reference value θref for the normalization is based on the mean scalar
concentration at z= 0.3λ.

For cases W25C14 (figure 3e, f ) and W25C25 (figure 3g,h), the wave phase speed c
is large and the critical layer is located far from the wave surface. Below the critical
layer, the streamlines are nearly parallel to the wave surface with the mean streamwise
velocity 〈u〉 − c in the −x-direction. Associated with this smooth streamline pattern,
the contour lines for 〈θ〉 are also nearly parallel to the wave surface. In cases W25C14
and W25C25 the scalar concentration 〈θ〉 near the wave surface is in general higher
than that in cases S25 and W25C2, as indicated by the lower elevations of the 〈θ〉 =
0.6 and 0.8 contour lines, respectively, in figures 3( f ) and 3(h) compared with those
in figures 3(b) and 3(d).

The effect of surface waves on the scalar field can be directly visualized from the
distribution of the wave-induced variation of the scalar concentration, θ̃ , in which the
time and plane average θ has been removed. Figure 5 shows the two-dimensional
contours of θ̃ and the vertical profile of the ξ -average of its magnitude, |θ̃ |. For cases
S25 (figure 5a) and W25C2 (figure 5b), the distribution of θ̃ is asymmetric about
the wave crest, with negative values above the leeward face and trough, and positive
values above the windward face and crest. For cases W25C14 (figure 5c) and W25C25
(figure 5d), the distribution of θ̃ becomes nearly symmetric with respect to the wave
trough, with positive values above the trough and negative values above the crest. For
all the four wave cases, the averaged magnitude |θ̃ | has its maximum near the wave
surface (at ζ/λ.0.04), and reduces to a small value at higher height. The peak values
of |θ̃ | for cases S25 and W25C2 are significantly higher than those for cases W25C14
and W25C25. Figure 5 also shows the effect of Sc on |θ̃ |. For all of the cases, the
increase of Sc causes an increase of the peak value and a reduction in the height of
the peak.

4.2. Sherwood number
The wave-induced variation of the near-surface scalar field causes considerable wave-
correlated variation in the Sherwood number. The Sherwood number is usually used to
measure the relative importance of convection and molecular diffusion in convective

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.164
Downloaded from https:/www.cambridge.org/core. University of Houston, on 20 Apr 2017 at 19:01:07, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.164
https:/www.cambridge.org/core


DNS of scalar transport over waves 71

0.1

0

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

0.1

0

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

0.1

0

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

0.1

0

0.2

0.3

0

0

0

0

0

0 0

0

0

0.2

0.01

0.01

0.01
0.02

0.04

0.04

0.04

0.08
0.08

–0.24

–0.24

–0.04
–0.08

–0.08

0.04

0.04

0.12

0.120.12

0.01

0.01

–0.03

–0.01

–0.01
–0.05

0.02

0.4 0.6 0.8 1.0

0.1

0.2

0.3

0 0.1 0.2

0.1

0.2

0.3

0 0.1 0.2

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.02 0.04

0.02 0.04

–0.24 0.24

–0.24 0.24

–0.05 0.05

–0.05 0.05

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 5. (Colour online) Distribution of wave-induced variation of scalar concentration,
θ̃ , for various wave cases: (a,e) S25; (b, f ) W25C2; (c,g) W25C14; and (d,h) W25C25.
(a–d) Show the contours of θ̃ for Sc= 1.0. The contour intervals are (a,e) 0.04, (b, f ) 0.04,
(c,g) 0.01 and (d,h) 0.01. Dashed contour lines indicate negative values. (e–h) Show the
vertical profiles of |θ̃ | (i.e. the average of |θ̃ | over all ξ ) for various values of Sc: ——,
Sc= 0.5; – – –, Sc= 1.0; — · —, Sc= 2.0; and — · · —, Sc= 4.0.
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FIGURE 6. (Colour online) (a) Profiles of phase-averaged local Sherwood number Sh over
the stationary wavy wall:E, RANS result of Park et al. (2004) for (ak, Sc)= (0.1π, 0.7);
@, RANS result of Dellil et al. (2004) for (ak, Sc) = (0.08π, 0.9); A, RANS result of
Dellil et al. (2004) for (ak, Sc) = (0.12π, 0.9); C, LES result of Choi & Suzuki (2005)
for (ak, Sc) = (0.1π, 0.7); and ——, current DNS result for (ak, Sc) = (0.1π, 0.7) and
Re∗= 283 (see figure 4). The corresponding wave surface phase is indicated by the wave
elevation η of ak= 0.1π in panel (b).

mass transfer processes (corresponding to the Nusselt number in heat transfer). The
local Sherwood number along the wave surface based on the phase-averaged scalar
field can be calculated as

Sh≡ hH/2
D
=
∂〈θ〉
∂z

∣∣∣∣
z=η

H

2(θ 1/2 − θ0)
, (4.2)

where h is the convective mass transfer coefficient, D is the molecular diffusivity as
in (2.3), θ 1/2 is the averaged θ at the centre height of the domain (z = H/2), and
θ0 = 0 is the imposed bottom surface value of θ as the boundary condition. Figure 6
shows the wave-correlated variation of Sh for the steep stationary wave case (i.e. the
case with ak= 0.314 and Re∗= 283 as shown in figure 4), in which the current DNS
result is compared with the results from several previous numerical studies (Park et al.
2004; Dellil et al. 2004; Choi & Suzuki 2005). For the steep stationary wave case, the
profile of Sh has a nearly sinusoidal shape. On the stationary wavy surface, the value
of Sh is small above the leeward face and large above the windward face, as a result
of the smaller and larger vertical gradients of 〈θ〉 on the leeward and windward faces,
respectively, as shown in figures 3(a) and 4.

Figure 7 shows the effect of wave motion on Sh. The plotted curves are for Sc= 1.0.
When the wave is slow (case W25C2), similar to the stationary wave condition, Sh is
also small above the leeward face and large above the windward face. However, the
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FIGURE 7. (Colour online) (a) Profiles of phase-averaged local Sherwood number Sh
for Sc = 1.0 and for various wave cases: E, S25 (c/u∗ = 0); @, W25C2 (c/u∗ = 2); A,
W25C14 (c/u∗= 14); andC, W25C25 (c/u∗= 25). The corresponding wave surface phase
is indicated by the wave elevation η in panel (b).

shape of the Sh curve apparently differs from the sinusoidal shape, with its minimum
point closer to the wave crest (near x/λ = 0.12). For cases with intermediate (case
W25C14) and fast (W25C25) waves, the distribution of Sh become symmetric with
respect to the wave form, with the maxima above the wave trough and the minima
above the crest, corresponding to the regions of positive and negative θ̃ in figure 5,
respectively.

For a given wave condition, varying the Sc value mainly causes changes in the
magnitudes of the mean and variation of Sh, while the shapes of the curves are
similar to those of the corresponding curves shown in figure 7. Thus, these additional
Sh curves with different Sc are not plotted here, and only the effect of Sc on the
averaged Sherwood number Sh (= (1/λ) ∫ λ0 Sh(x)dx) is discussed. Figure 8 shows
the dependence of Sh on Sc. Previous studies on scalar transport in wall-bounded
or free-surface-bounded turbulent flows have shown that the scaling of Sh with Sc
follows a power law (e.g. Shaw & Hanratty 1977; Jähne & Haußecker 1998; Na,
Papavassiliou & Hanratty 1999; Hasegawa & Kasagi 2008), i.e.

Sh= αScβ . (4.3)

The current DNS results also exhibit this power-law trend for each wave condition
as shown in figure 8. For the four different surface wave conditions considered in
this study, the power-law coefficient β varies slightly around an averaged value of
0.555, while α varies between 21.13 and 27.09. The pronounced variation of α with
the surface wave condition indicates the importance of wave motion on the magnitude
of scalar transport. To further elucidate the effect of wave motion on scalar transport,
the averaged Sherwood number Sh is plotted in figure 9 as a function of the wave
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FIGURE 8. (Colour online) Dependence of mean Sherwood number Sh on Sc for various
wave cases: E, S25 (c/u∗ = 0); @, W25C2 (c/u∗ = 2); A, W25C14 (c/u∗ = 14); and C,
W25C25 (c/u∗ = 25). The lines are the curve fittings: – – –, Sh = 27.09Sc0.579 for S25;
— · —, Sh= 26.54Sc0.609 for W25C2; · · · , Sh= 23.68Sc0.514 for W25C14; and — · · —,
Sh= 21.13Sc0.518 for W25C25. The two solid lines show the averaged slope of the four
surface wave conditions, i.e. Sh∝ Sc0.555.
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FIGURE 9. (Colour online) Dependence of mean Sherwood number Sh on wave age c/u∗
for various Schmidt numbers: , Sc= 0.5; , Sc= 1.0; , Sc= 2.0; and , Sc= 4.0. In
panel (b), Sh is rescaled by Sc0.555.

age c/u∗. When Sc is fixed, in general Sh decreases as c/u∗ increases (figure 9a).
When normalized by Sc0.555 (as suggested by the curve fitting in figure 8), the Sh
curves for all the different Schmidt numbers collapse reasonably well.

4.3. Profiles of time- and plane-averaged quantities
The phase-averaged statistics in § 4.1 have shown significant wave-induced variation
in the scalar field, which is highly dependent on the wave phase. In many
practical applications, the surface wave effect is usually not directly captured in
a phase-resolved context. Instead, the averaged wave effect is parameterized as
the effective wave roughness that appears in the one-dimensional profiles of the
time- and plane-averaged velocity and scalar concentration, which can be obtained
based on field and laboratory measurement data (e.g. Charnock 1955; Smith 1988;
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FIGURE 10. (Colour online) Profiles of mean streamwise velocity u+ for various wave
cases:E, S25 (c/u∗= 0);@, W25C2 (c/u∗= 2);A, W25C14 (c/u∗= 14); andC, W25C25
(c/u∗= 25). The semi-logarithmic plot in panel (a) highlights the log-law region, with the
thin solid lines indicating the logarithmic law u+= (1/κ) ln(z+/z+0 ) and the corresponding
values of κ and z+0 for each simulation case given in table 1. The logarithmic plot in panel
(b) highlights the near-wall viscous layer, with the thin solid lines indicating the linear law
u+ = z+. In the figure, the DNS result of flat-boundary channel flow from Kim, Moin &
Moser (1987) is indicated by the thick line, and the experimental data from Eckelmann
(1974) (corrected by Kim et al. 1987) are indicated by the filled circles.

Fairall et al. 1996; Johnson et al. 1998; Toba et al. 2001). Although limited to low
Reynolds number conditions, DNS has been shown to provide valuable insights for
understanding the dependence of the effective wave roughness on the characteristics
of the waves (Sullivan et al. 2000). In this subsection, time and plane averaging
is performed for the instantaneous snapshots of scalar and velocity fields obtained
from the current DNS to help quantify the averaged wave effect. Note that the plane
average is performed on the ζ -plane in the computational space, as defined in § 4.1.

Figure 10 shows the profiles of the mean streamwise velocity u (for the definition,
see (4.1) and the associated discussion). The slow wave case (W25C2, c/u∗ = 2)
shows a mean velocity profile close to that of the stationary wave case (S25). As
c/u∗ increases, the profile of u+ shifts monotonically towards higher values, which
is expected since the wave form drag decreases as c/u∗ increases (Belcher & Hunt
1998). For the current DNS, the normalized pressure-induced form drag Fp and surface
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FIGURE 11. (Colour online) Budget of surface drag as a function of wave age: , total
surface drag ftotal; , pressure-induced form drag fp; and , viscous drag fν .

viscous drag Fν per unit projected horizontal area can be calculated based on the
phase-averaged pressure and velocity as

Fp = 1
u2∗λ

∫ λ
0

〈p〉
ρ

∂η

∂x
dx, (4.4)

Fν = 1
u2∗λ

∫ λ
0
ν

[(
∂〈u〉
∂z
+ ∂〈w〉

∂x

)
− 2

∂〈u〉
∂x

∂η

∂x

]
dx, (4.5)

and the total surface drag per unit area equals to their sum, Ftotal=Fp+Fν . As shown
in figure 11, in cases S25 and W25C2, the form drag makes a significant contribution
to the total surface drag. In case W25C14, the form drag is very small and the total
surface drag is mostly due to the viscous effect, indicating that the mean flow and the
surface wave are nearly in equilibrium. In case W25C25, the wave phase speed is fast
and the surface wave pushes the mean flow forwards, resulting in negative form drag
(i.e. a thrust). A similar dependence of the surface drag on the wave age has been
reported in various previous studies (e.g. Li et al. 2000; Sullivan et al. 2000; Kihara
et al. 2007; Yang & Shen 2010).

For all the four wave conditions considered in this study, the mean velocity
profiles exhibit a distinct logarithmic region, as indicated by the thin solid lines
in the semi-logarithmic plot in figure 10(a). These lines are determined by fitting
the mean velocity profiles in the range of z+ ∈ [50, 150] (see appendix B) with the
logarithmic profile

u+ = 1
κ

ln
(
z+/z+0

)= 1
κ

ln(z+)+ B, (4.6)

where the superscript ‘+’ denotes the quantities normalized by the wall units
(i.e. velocity is normalized by u∗ and length is normalized by ν/u∗), κ is the
von Kármán constant, z+0 is the effective wave surface roughness, and B is the profile
offset. For each case, the corresponding log-law profile parameters κ , z+0 and B are
listed in table 1. Similar to the DNS results reported in Sullivan et al. (2000), the
evaluated z+0 values in most of the DNS cases considered in this study fall in the
transitional regime (0.1< z+0 < 2.2) in terms of the sea-surface roughness, which was
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categorized to be a common sea state by Kitaigorodskii & Donelan (1984). The slow
wave case W25C2 exhibits a roughness of z+0 = 2.31 that is slightly higher than the
upper bound of the transitional regime. For cases S25, W25C2 and W25C14, the
values for κ are close to the standard value of κ = 0.41 for the flat-wall case. The
fast wave case W25C25 exhibits a smaller value of κ = 0.27, which is likely due
to the strong surface motion of the fast propagating surface waves when c/u∗ = 25.
Similarly, Sullivan et al. (2000) reported a 10 % reduction of κ in DNS of turbulence
over progressive waves with ak = 0.1 (i.e. the waves are less steep than the ones
studied here). Note that due to this smaller κ in case W25C25, its evaluated z+0 is
larger than that in case W25C14. Therefore, the larger z+0 in case W25C25 does
not imply that the turbulence sees the fast wave ‘rougher’ than the intermediate
wave. It should be pointed out that caution should be taken when interpreting the
mean velocity profile for the present fast wave case due to the limited Reynolds
number used in this study. Under real oceanic conditions, the fast wave case usually
corresponds to the wind over storm-generated ocean swells, for which the Reynolds
number is much higher than what a DNS can afford. The current DNS of c/u∗ = 25
are more relevant to the condition of light wind over fast mechanically generated
waves in laboratory-scale wind–wave tanks (e.g. Buckley & Veron 2016). Further
study is required in the future in order to understand the effect of surface waves on
the von Kármán constant and the wave surface roughness.

The near-surface behaviour of the mean velocity profile is shown by the logarithmic
plot in figure 10(b). The mean velocity profiles exhibit a nearly linear behaviour in
the viscous sublayer (i.e. z+< 5), with some non-negligible difference from the linear
law of the flat-wall turbulence. In particular, the viscous sublayer profiles of the
intermediate (W25C14) and fast (W25C25) wave cases are close to the linear profile
of the flat-wall case (e.g. Kim et al. 1987; Lee & Moser 2015), i.e. u+= z+, but with
larger value towards the wave surface due to the positive mean streamwise surface
orbital velocity of the nonlinear Stokes wave. On the other hand, the stationary (S25)
and slow (W25C2) wave cases also show a linear profile in the viscous sublayer, but
with a velocity deficit compared with the flat-wall linear law. The viscous sublayer
profile of the stationary wave case (S25) is nearly parallel to that of the flat wall,
while the one for the slow wave case (W25C2) is tilted slightly towards higher values
when approaching the surface due to the positive mean surface orbital velocity of the
Stokes waves.

A similar analysis can be done for the mean scalar concentration. By compiling
a number of experimental datasets, Kader (1981) showed that the mean temperature
and scalar concentration in fully developed turbulent boundary layers follow a linear
profile in the viscous sublayer and a logarithmic profile in the log-law region. In the
near-surface region, the Kader correlation suggests that

θ +/Sc= z+ − Sc[c4z+4 +O(z+5)], (4.7)

where c4 ≈ 1.5 × 10−4 as estimated based on the experimental data (Kader 1981).
Therefore, for the flat-wall case it is expected that

θ + ≈ Sc z + (4.8)

to the leading order near the surface, with the deviation from this linear profile
increasing towards larger z + and with higher Sc. Similar near-surface linear behaviour
is found in the current DNS results over wave surfaces. Here θ + = θ/θ∗, where

θ∗ = D
u∗

dθ
dz

∣∣∣∣
z=0

(4.9)

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.164
Downloaded from https:/www.cambridge.org/core. University of Houston, on 20 Apr 2017 at 19:01:07, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.164
https:/www.cambridge.org/core


78 D. Yang and L. Shen

10010–1 102101

10010–1 102101

101

100

101

100

(a)

(b)

FIGURE 12. (Colour online) Profiles of rescaled mean scalar concentration θ +/Sc. Panel
(a) shows various wave cases with a fixed Schmidt number Sc= 1.0:E, S25 (c/u∗ = 0);
@, W25C2 (c/u∗ = 2); A, W25C14 (c/u∗ = 14); and C, W25C25 (c/u∗ = 25). Panel (b)
shows case W25C14 (c/u∗= 14) with various Schmidt numbers:u, Sc= 0.5;p, Sc= 1.0;
q, Sc= 2.0; ands, Sc= 4.0. The profiles are shown on a logarithmic scale to highlight
the near-wall region, with the solid line indicating the linear law θ +/Sc = z+. In panel
(a), the DNS result from Kawamura et al. (1998) is also plotted (the thick line).

is a characteristic scalar scale (in the case of heat transfer, θ∗ is also referred to as
the friction temperature) (Kim & Moin 1989). Figure 12 shows the profiles of θ +/Sc
(in a logarithmic plot) for some representative cases obtained by the current DNS. In
particular, figure 12(a) shows the profiles for various wave cases with Sc= 1.0, and
figure 12(b) shows the profiles for case W25C14 with various Schmidt numbers (other
cases also follow consistent trends for the wave and Sc dependences, and are thus not
shown here due to space limitation). In the viscous sublayer (z+< 5), the profiles for
different wave conditions and Schmidt numbers collapse well and agree with the linear
law found in the flat-wall condition.

The logarithmic law behaviour of θ + can be visualized in a semi-logarithmic plot
as shown in figure 13. Similar to the profile of u+, for a fixed Sc the θ + profile
shifts towards higher values when c/u∗ increases, with the profile for c/u∗ = 2 close
to that for the stationary wave case (figure 13a). For each wave condition, the θ +

profile shifts monotonically to higher values when Sc increases (see for example the
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FIGURE 13. (Colour online) Profiles of mean scalar concentration θ +. The definitions
of the symbols are the same as those in figure 12. The profiles are shown on a semi-
logarithmic scale to highlight the log-law region, with the thin solid lines indicating the
logarithmic law θ + = (1/κθ ) ln(z+/z+0,θ ) and the corresponding values of κθ and z+0,θ for
each simulation case given in table 1. In panel (a), the DNS result from Kawamura et al.
(1998) is also plotted (the thick line).

case W25C14 shown in figure 13b). Similar to (4.6), the logarithmic law for scalar
concentration can be written as (e.g. Kader 1981)

θ + = 1
κθ

ln(z+/z+0,θ)=
1
κθ

ln z+ + Bθ , (4.10)

where κθ is the von Kármán constant of scalar, z+0,θ is the effective wave surface
roughness for scalar, and Bθ is the offset of the mean scalar profile. For each wave
case, the corresponding parameters κθ , z+0,θ , and Bθ can be obtained by fitting the
DNS data in the log-law region (defined as 50< z+ < 150 in this study as explained
in appendix B) with the logarithmic profile (4.10). The estimated values of these
parameters are listed in table 1. For each wave case, the evaluated value of the
scalar von Kármán constant κθ exhibits a small variation when the Schmidt number
is changed, while the profile offset Bθ (or the roughness z+0,θ ) increases significantly
as Sc increases.
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FIGURE 14. (Colour online) Dependence of Bθ on the Schmidt number for various wave
cases:E, S25 (c/u∗= 0);@, W25C2 (c/u∗= 2);A, W25C14 (c/u∗= 14); andC, W25C25
(c/u∗ = 25). Equation (4.14) suggests that Bθ + L1/2 = Sc1−βH +/(2α), as shown by the
lines: – – –, S25; — · —, W25C2; · · · , W25C14; and — · · —, W25C25. For the current
DNS, β≈ 0.555 when averaged among the four wave conditions, and the α value for each
wave condition can be found in the caption of figure 8.

The dependence of Bθ on Sc can be further quantified. Recall that the averaged
Sherwood number Sh follows a power-law dependence on Sc, as shown in (4.3).
Applying the surface average to (4.2) and combining it with (4.3) yields

αScβ = dθ +

dz

∣∣∣∣
z+=0

H +

2θ +1/2
. (4.11)

The near-surface linear profile (4.8) gives

dθ +

dz

∣∣∣∣
z+=0

= Sc, (4.12)

and the logarithmic profile (4.10) gives

θ +1/2 =
1
κθ

ln
(
H +/2

)+ Bθ . (4.13)

Substituting (4.12) and (4.13) into (4.11) gives

Bθ = H +

2α
Sc1−β − L1/2, (4.14)

where
L1/2 = 1

κθ
ln
(
H +/2

)
. (4.15)

As shown in table 1 and figure 9, for a given wave condition the parameters α,
β and κθ estimated based on the current DNS data are nearly constant. Therefore,
equation (4.14) suggests that Bθ ∼Sc1−β , where β≈0.555 as shown in § 4.2. Figure 14
shows the estimated Bθ + L1/2 as a function of the Schmidt number. With β = 0.555
and α given by the power-law fitting in figure 8, equation (4.14) is found to provide
a reasonable parameterization for Bθ , which agrees well with the Bθ values obtained
directly from the log-law profile fitting (the values are listed in table 1).
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FIGURE 15. (Colour online) Profiles of (a) θ ′+rms, (b) θ ′u′ +, and (c) −θ ′w′ + on a linear
scale; and profiles of (d) θ ′+rms/Sc, (e) θ ′u′ +/Sc, and ( f ) −θ ′w′ +/Sc on a logarithmic scale.
The plotted DNS results are for Sc= 1.0 with various wave cases:E, S25 (c/u∗ = 0);@,
W25C2 (c/u∗= 2);A, W25C14 (c/u∗= 14); andC, W25C25 (c/u∗= 25). The solid lines
in (d–f ) indicate the expressions proposed by Kawamura et al. (1998).

4.4. Time- and plane-averaged statistics of scalar fluctuations
The presence of surface waves can induce a strong effect on the air turbulence.
Statistics of velocity fluctuations above plane progressive waves of various wave ages
and steepnesses have been studied in detail in previous studies (e.g. Sullivan et al.
2000; Kihara et al. 2007; Sullivan et al. 2008; Yang & Shen 2010; Hara & Sullivan
2015). On the other hand, the statistics of scalar fluctuations over waves have rarely
been studied, with the exception of some studies for stationary wavy walls (e.g. Dellil
et al. 2004; Park et al. 2004; Rossi 2010) and for stratified turbulence over water
waves (e.g. Sullivan & McWilliams 2002; Druzhinin et al. 2016).

In this subsection, the time- and plane-averaged statistics of scalar fluctuations are
studied based on the DNS data. Figure 15(a–c) shows the profiles of θ ′+rms, θ ′u′

+,
and −θ ′w′ + for various wave cases with Sc= 1.0. The profiles of θ ′+rms (figure 15a)
and θ ′u′ + (figure 15b) have a similar trend. As z+ increases from 0, the value first
increases to a peak and then decreases to approach a constant value. In particular,
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the maximum is at z+ ≈ 35 for case S25, z+ ≈ 47 for case W25C2, and z+ ≈ 15
for cases W25C14 and W25C25. Among the three progressive wave cases, the peak
values of both θ ′+rms and θ ′u′ + increase with c/u∗, indicating the increase of wave
effect as the wave propagates faster. The peak values of θ ′+rms and θ ′u′ + in case S25
are slightly higher than the corresponding ones in case W25C2, because the presence
of flow separation in case S25 (figure 3a) enhances the turbulence intensity above the
wave trough. The wave-induced effect on θ ′+rms and θ ′u′ + appears to be mainly in the
viscous wall region (i.e. z+ < 50), with only slight differences at higher elevation.

Figure 15(c) shows the profiles of −θ ′w′ +. Assuming a statistically steady state and
integrating the scalar transport equation over a control volume, the total vertical scalar
flux at any height z,

−θ ′w′ +D
dθ
dz
= θ∗u∗, (4.16)

is a constant in the stress-driven Couette flow considered in the present study. In the
viscous wall region (z+ < 50), the contribution from the molecular flux Ddθ/dz is
significant, therefore the value of −θ ′w′ + (=−θ ′w′/θ∗u∗) is less than 1. In this region,
the values of −θ ′w′ + in cases S25 and W25C2 are larger than those in cases W25C14
and W25C25. In the outer region (z+> 50), the molecular diffusion effect is negligible
and thus −θ ′w′ + ≈ 1.0 for all of the cases. Similar to θ ′+rms and θ ′u′ +, the profile of
−θ ′w′ + is also affected by the surface waves mainly in the viscous wall region. In
particular, as z+ increases, θ ′u′ + approaches 1 more rapidly in cases S25 and W25C2
than in cases W25C14 and W25C25, indicating more intensive turbulent mixing in
cases S25 and W25C2.

Previous studies on scalar transport over flat boundary have shown that in the
viscous sublayer (i.e. z+ < 5) the scalar fluctuation profiles can be expressed (to the
leading order) as (e.g. Antonia & Kim 1991; Kawamura et al. 1998)

θ ′+rms/Sc= 0.38z+, (4.17)

θ ′u′ +/Sc= 0.12z+2, (4.18)
−θ ′w′ +/Sc= 7× 10−4z+3. (4.19)

To look closely at the viscous sublayer, we plot in figure 15(d–f ) the profiles of
θ ′+rms/Sc, θ ′u′ +/Sc, and −θ ′w′ +/Sc on a logarithmic scale. For θ ′+rms/Sc and θ ′u′ +/Sc,
the DNS results for various wave cases are found to be close to the expressions given
by (4.17) and (4.18), respectively. Differently, for −θ ′w′ +/Sc the presence of waves
causes an obvious discrepancy from the flat-wall expression given by (4.19). For better
understanding of the effect of surface waves on the vertical scalar flux −θ ′w′, more
turbulence statistics are quantified and discussed later in §§ 4.5 and 4.6.

Figure 16 shows the effect of Sc on the time- and plane-averaged statistics of scalar
fluctuation and fluxes. In particular, figure 16(a–c) shows the profiles of θ ′+rms, θ ′u′

+,
and −θ ′w′ + for the wave case W25C14 with various Sc. For θ ′+rms (figure 16a) and
θ ′u′ + (figure 16b), when Sc increases, their peaks in the viscous wall region (i.e.
z+< 50) increase significantly, while in the outer layer (i.e. z+> 50) the profiles only
slightly shift towards larger values. When rescaled by Sc and plotted on a logarithmic
scale, in the viscous sublayer (i.e. z+ < 5) the profiles of θ ′+rms/Sc (figure 16d) and
θ ′u′ +/Sc (figure 16e) for all of the four Sc values are close to the expressions given by
(4.17) and (4.18), respectively. Differently, the change of Sc has much less effect on
the profile of −θ ′w′ + (figure 16c). When plotted on a logarithmic scale (figure 16f ),
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FIGURE 16. (Colour online) Profiles of (a) θ ′+rms, (b) θ ′u′ +, and (c) −θ ′w′ + on a linear
scale; and profiles of (d) θ ′+rms/Sc, (e) θ ′u′ +/Sc, and ( f ) −θ ′w′ +/Sc on a logarithmic scale.
The plotted DNS results are for the wave case W25C14 with various Schmidt numbers:

, Sc= 0.5; , Sc= 1.0; , Sc= 2.0; and , Sc= 4.0. The solid lines in (d–f ) indicate
the expressions proposed by Kawamura et al. (1998).

the profiles of −θ ′w′ +/Sc differ significantly from the flat-wall expression given by
(4.19), similar to the results shown in figure 15( f ).

In figures 15 and 16, only a number of selected cases are shown to illustrate the
effect of surface waves and Schmidt number on the statistics of scalar fluctuations.
Other cases exhibit similar trends for the surface wave and Sc effects. Note that in the
logarithmic plots shown in figures 15( f ) and 16( f ), for most of the cases the viscous
sublayer portion of the −θ ′w′ +/Sc profile cannot be displayed because −θ ′w′ +/Sc< 0
there, which is caused by the strong wave-induced modulation to the vertical scalar
flux −θ ′w′. About this point, more discussions are given in §§ 4.5 and 4.6.

4.5. Wave-correlated distribution of scalar variance and fluxes
To help understand the effect of surface waves on the scalar fluctuation statistics, in
this subsection the phase averaging method (see § 4.1 for the mathematical definition)
is used to quantify the wave-correlated distribution of the scalar variance and fluxes.
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