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FIGURE 17. (Colour online) Contours of 〈θ ′2〉/θ 2
∗ for various wave cases: (a) S25; (b)

W25C2; (c) W25C14; and (d) W25C25. Contours of 〈u′2〉/u2
∗ for various wave cases: (e)

S25; ( f ) W25C2; (g) W25C14; and (h) W25C25. Sc= 1.0.

In particular, for each wave case the DNS results for Sc = 1.0 are presented. The
results for other Schmidt numbers exhibit similar wave-correlated behaviours, and are
thus not shown here.

Figure 17 shows the contours of the phase-averaged scalar variance, 〈θ ′2〉, and the
phase-averaged streamwise velocity variance, 〈u′2〉. The scalar variance 〈θ ′2〉 shows
considerable correlation with 〈u′2〉, and exhibits strong phase-dependent variation
induced by the surface waves. In particular, for the stationary wave case S25
(figure 17a,e) there exists a strong shear layer with high intensity for 〈θ ′2〉 and 〈u′2〉,
which originates from the crest and extends downstream to above the succeeding
trough. In case W25C2 (figure 17b), the high-〈θ ′2〉 region is also located above
the trough, but the maximum is located more upstream than that in case S25. The
high-〈θ ′2〉 regions in cases S25 and W25C2 are consistent with the high vertical
gradient regions for 〈θ〉 shown in figures 3(b) and 3(d), respectively.

Different from cases S25 and W25C2, in cases W25C14 and W25C25 the high-〈θ ′2〉
regions are located above the windward face of the wave crest, and are much closer to
the surface as a result of the smooth streamlines and 〈θ〉 contour lines that are parallel
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FIGURE 18. (Colour online) Contours of 〈θ ′u′〉/θ∗u∗ for Sc = 1.0 and for various wave
cases: (a) S25; (b) W25C2; (c) W25C14; and (d) W25C25.

to the wave surface in these two faster wave cases (figure 3e–h). The streamwise
velocity variances 〈u′2〉 for cases W25C14 (figure 17g) and W25C25 (figure 17h) show
similar wave-correlated distributions as the corresponding 〈θ ′2〉.

Consistent with the similarity between the 〈θ ′2〉 and 〈u′2〉 distributions, the horizontal
scalar flux 〈θ ′u′〉 shown in figure 18 exhibits a similar wave-correlated distribution and
wave condition dependence as in 〈θ ′2〉 (cf. figure 17). Moreover, the wave-induced
variations of 〈θ ′2〉 and 〈θ ′u′〉 are mainly within the viscous wall region z+ < 50
(corresponding to (z − η)/λ < 0.12), consistent with the wave-affected region of the
time- and plane-averaged profiles θ ′+rms and θ ′u′ + shown in figure 15.

Figure 19 shows the contours of the vertical scalar flux 〈−θ ′w′〉. Similar to 〈θ ′2〉
and 〈u′2〉, the presence of surface waves also induces significant wave-correlated
variation in 〈−θ ′w′〉. In cases S25 and W25C2, the maximum 〈−θ ′w′〉 is located
above the trough, in a region close to the region of maximum 〈u′2〉 (cf. figure 17e, f ).
In cases W25C14 and W25C25, the maximum 〈−θ ′w′〉 is located above the leeward
face of the crest. Moreover, there exists a distinct negative 〈−θ ′w′〉 region above
the windward face of the crest, which does not exist in flat-wall boundary layer
turbulence. The negative 〈−θ ′w′〉 region is insignificant in cases S25 and W25C2,
but is prominent in cases W25C14 and W25C25. The distinct wave-induced negative
〈−θ ′w′〉 region near the windward face causes the time and plane average of −θ ′w′ +
in the viscous sublayer to be significantly lower than that above a flat surface, as
shown in figures 15( f ) and 16( f ).

A similar distinct negative vertical flux region was found for the Reynolds stress
〈−u′w′〉 in turbulence over intermediate and fast waves in the DNS studies by Yang
& Shen (2009, 2010). Recently, the existence of the negative 〈−u′w′〉 region has also
been observed in the laboratory experiment of Buckley & Veron (2016) using the
particle image velocimetry technique. Yang & Shen (2009) studied the characteristics
of coherent vortical structures in turbulence over progressive surface waves, and
suggested that the significant negative Reynolds stress above the windward face is
caused by the vertically bent quasi-streamwise vorticies. A similar mechanism is
expected for generating the negative 〈−θ ′w′〉, which is studied in more detail in § 4.6.
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FIGURE 19. (Colour online) Contours of 〈−θ ′w′〉/θ∗u∗ for Sc= 1.0 and for various wave
cases: (a) S25; (b) W25C2; (c) W25C14; and (d) W25C25.

4.6. Correlation between scalar and vortical structures
Coherent vortical structures in turbulent boundary layer play an important role in
the mixing and transport of momentum as well as scalars (e.g. Robinson 1991;
Kawamura et al. 1998; Zedler & Street 2001; Choi & Suzuki 2005; Wallace 2016).
In this subsection, the correlation between vortical structures and scalar fluctuations
and fluxes is studied by direct observation of instantaneous vortices and the scalar
field, and by conditional averages.

Figure 20 shows the instantaneous vortical structures and scalar fluctuations in the
slow wave case W25C2. In particular, the vortices are visualized using the λ2 method
(Jeong & Hussain 1995). Based on the DNS data, the strain-rate tensor S and the
rotation tensor Ω are calculated, and λ2 is the second largest eigenvalue of the tensor
S2 + Ω2. In the flow field, the regions with λ2 < 0 correspond to the interior of
vortices (Jeong & Hussain 1995). Moreover, in figure 20(a) the instantaneous vortices
are coloured based on the streamwise vorticity, i.e. white if ωx> 0 and black if ωx< 0.
In figure 20(a), several characteristic instantaneous vortices can be observed: reversed
horseshoe vortices A and B, and quasi-streamwise vortices C–E. In particular, these
reversed horseshoe vortices have their heads upstream and the two legs extended
downstream, with ωx > 0 for the left leg and ωx < 0 for the right leg (observed when
facing the +x-direction).

The correlation between these characteristic vortices and the scalar fluctuations can
be clearly seen in figure 20(b,c). The reversed horseshoe vortices A and B are located
above the wave trough. Taking vortex B as an example, the rotating motions of its
head and two legs induce strong sweep motion (w′< 0) towards the wave trough and
bring high θ downwards, resulting in θ ′> 0 and −θ ′w′> 0 (figure 20b). The effect of
the reversed horseshoe vortex A on the scalar transport is similar to that of vortex B.
Vortices C and D appear as a counter-rotating pair, and induce an upwelling motion
(i.e. w′> 0) between them. Because on average θ increases with height, the upwelling
flow ejects low θ upwards and generates a region of θ ′< 0; the combination of w′> 0
and θ ′ < 0 results in a region with −θ ′w′ > 0 between vortices C and D (figure 20c).
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FIGURE 20. (Colour online) Instantaneous flow and scalar fields in turbulence over the
slow wave (case W25C2, Sc= 1.0). Here only a small portion of the simulation domain
is shown for illustration purposes. In (a), five characteristic vortices are marked, i.e. the
reversed horseshoe vortices A and B and the quasi-streamwise vortices C–E. Two (y, z)-
planes at the leeward face (plane i) and crest (plane ii) are plotted, with the contours
of θ ′/θ∗ and vectors of (v′, w′) shown simultaneously. Zoom-in views of planes (i) and
(ii) are plotted with the contours of −θ ′w′/θ∗u∗ shown in (b) and (c), respectively. The
instantaneous vortices are identified by the iso-surface of λ2 =−0.02, with white colour
for ωx > 0 and black colour for ωx < 0. In (b), the leg of vortex A with ωx > 0 is labelled
as Ap, and the one with ωx < 0 is labelled as An. Similar notations are used to mark the
two legs of vortex B.

The single quasi-streamwise vortex E generates a downwelling event (w′ < 0) on its
right side that brings high θ downwards and results in θ ′ > 0 and −θ ′w′ > 0 there.

The above correlations between the vortices and scalar fluctuations in the slow
wave case are similar to those in turbulence over flat boundaries (see the reviews
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FIGURE 21. (Colour online) Educed flow and scalar fields for case W25C2 with Sc= 1.0
by conditional average of the Q2 events above the wave trough. The horseshoe vortex is
visualized by the iso-surfaces of λ2 =−0.002, with white colour on the leg with ωx > 0
and black colour on the leg with ωx < 0. Contours of θ ′/θ∗ are shown on the vertical
plane across the two legs. Contours of −θ ′w′/θ∗u∗ and vectors of (v′, w′) are shown in
the zoom-in view of the vertical plane, on which the thick white and black lines are the
iso-contour lines of λ2 =−0.002.

by Robinson 1991; Wallace 2016). As shown by the statistical analysis in Yang &
Shen (2009, 2010), in turbulence over progressive surface waves, different types of
characteristic vortices are present for different wave conditions, and these different
characteristic vortices also have different preferential locations relative to the surface
waves. In the case of slow waves, reversed horseshoe vortices are usually generated
above the wave trough, and then break up into quasi-streamwise vortices as their legs
are stretched downstream (Yang & Shen 2009). Then the quasi-streamwise vortices
are convected downstream and lifted upwards over the succeeding wave crests and
troughs. The combination of the wave-phase-dependent distribution of the coherent
vortices and their strong correlations with the scalar fluctuations provides a mechanism
for generating the wave-correlated distributions of the scalar variance 〈θ ′2〉 (figure 17)
and the scalar fluxes 〈θ ′u′〉 (figure 18) and 〈−θ ′w′〉 (figure 19).

The correlation between vortices and scalar fluctuations can be further investigated
by a conditional average based on the quadrants of the vertical turbulent flux (Wallace
2016). Similar to the quadrant analysis for Reynolds stress, the vertical scalar flux
〈−θ ′w′〉 can be divided into four quadrants based on the signs of θ ′ and w′: Q1 (θ ′>
0, w′ > 0), Q2 (θ ′ < 0, w′ > 0), Q3 (θ ′ < 0, w′ < 0) and Q4 (θ ′ > 0, w′ < 0). The
coherent flow structure related to a specific quadrant can be educed by conditionally
sampling and averaging the instantaneous flow events of the chosen quadrant. A brief
introduction to the quadrant conditional average scheme used in the current analysis
is given in appendix C.

For case W25C2, quadrant analysis indicates that the strong vertical scalar flux
above the wave trough shown in figure 19(b) is mainly due to the Q2 and Q4 events
(see figure 30). By applying the quadrant-based conditional average above the wave
trough, the coherent flow structures associated with the Q2 and Q4 events can be
educed. Figure 21 shows that a horseshoe vortex (with its head on the downstream
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FIGURE 22. (Colour online) Educed flow and scalar fields for case W25C2 with Sc= 1.0
by conditional average of the Q4 events above the wave trough. The reversed horseshoe
vortex is visualized by the iso-surface of λ2 = −0.0008, with white colour on the leg
with ωx > 0 and black colour on the leg with ωx < 0. Contours of θ ′/θ∗ are shown on
the vertical plane across the two legs. Contours of −θ ′w′/θ∗u∗ and vectors of (v′,w′) are
shown in the zoom-in view of the vertical plane, on which the thick white and black lines
are the iso-contour lines of λ2 =−0.0008.

side) is educed by a conditional average of Q2 events above the wave trough. Such a
vortex induces ejection of lower θ upwards (since θ has lower value near the bottom
boundary), which results in θ ′ < 0 and −θ ′w′ > 0 between the two legs. It should
be pointed out that direct observation of the instantaneous snapshots suggests the
presence of quasi-streamwise vortices and horseshoe vortices (with the heads located
downstream relative to the legs) in this flow region, both of which contribute to
the Q2 events. Because the quadrant-based conditional average does not distinguish
these two types of vortices, the educed flow field in figure 21 should account for the
contribution of both types of vortices.

Figure 22 shows the conditionally averaged flow and scalar fields for Q4 events
in case W25C2. The educed vortical structure exhibits a clear reversed horseshoe
shape located slightly above the wave trough, which represents well the instantaneous
reversed horseshoe vortices observed from the instantaneous snapshots (figure 20). The
reversed horseshoe vortex induces downwelling motion that sweeps high θ towards the
wave trough, which results in θ ′>0 and −θ ′w′>0 between the two legs. The reversed
horseshoe vortex educed from Q4 events (figure 22) is located lower than the vortex
pair educed from Q2 events (figure 21).

Different from the slow wave case discussed above, in the intermediate (W25C14)
and fast (W25C25) wave cases the dominant flow structures are the vertically bent
quasi-streamwise vortices, e.g. the vortices A–D shown in figure 23(a). Yang &
Shen (2009) showed that the characteristics of coherent vortices in turbulence over
intermediate and fast waves are very similar, with the difference mainly in the
population and intensity of the vortices. Therefore, the analysis here focuses on
the intermediate wave case W25C14 as a representative case. Figure 23 shows the
instantaneous vortex and scalar fields in case W25C14, and figure 24 shows a sketch
that illustrates the correlation between a vortex and the vertical scalar flux. In a
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FIGURE 23. (Colour online) Instantaneous flow and scalar fields in turbulence over
the intermediate wave (case W25C14, Sc = 1.0). Only a small portion of the
simulation domain is shown for illustration purposes. Four characteristic vertically bent
quasi-streamwise vortices (A–D) are marked. In (a), the instantaneous vortices are
identified by the iso-surface of λ2=−0.02, with white colour for ωx > 0 and black colour
for ωx< 0. The (y, z)-plane above the leeward face (plane i) and the (x, z)-plane above the
windward face (plane ii) are plotted, with the contours of θ ′/θ∗ and vectors of velocity
fluctuation (the components parallel to each plane) shown simultaneously. Panels (b) and
(c) show the contours of the scalar flux −θ ′w′/θ∗u∗ on planes (i) and (ii), respectively. In
(b) and (c), the locations of the vortices are indicated by the iso-contours of λ2 =−0.02,
with white colour for ωx > 0 and black colour for ωx < 0.

reference frame moving at the wave phase speed, the near-surface vortices travel
backwards in the −x-direction (see the mean streamlines shown in figure 3). They
appear to be straight and horizontally oriented above the leeward face and the crest,
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FIGURE 24. Sketch of the characteristic vortical structure (i.e. the vertically bent quasi-
streamwise vortex) in turbulence over intermediate and fast waves. Panel (a) illustrates the
correlation between the vortex and the turbulent fluctuations of velocity and scalar. The
arrows near the vortex indicate the velocity fluctuation vectors associated with the vortex,
with solid arrows in front of the vortex and dashed arrows behind the vortex. Panels (b–d)
show three representative samples of the instantaneous vortices extracted from the DNS
data of case W25C14.

and then bend downwards as they travel over the windward face. The unique shape
and wave-phase correlation of the vortices result in the wave-correlated scalar flux
shown in figure 19(c,d).

Taking the vortex C in figure 23 as an example, its horizontal part above the
leeward face induces an upwelling motion (i.e. w′ > 0) on its left side (observed
when facing the +x-direction), which ejects low θ upwards and results in θ ′< 0 (see
plane-i in figure 23a) and leads to a Q2 flux −θ ′w′> 0 (figure 23b). This mechanisms
is similar to the Q2 flux generation mechanism in case W25C2. On the other hand,
the vertical part of the vortex C above the windward face induces a horizontal
velocity fluctuation u′ < 0 on its left side (observed when facing the +x-direction),
which induces a vertical velocity fluctuation w′ < 0 because ∂〈w〉/∂x< 0 there (Yang
& Shen 2009) (also see figure 3e and the sketch in figure 24a). Similarly, the
fluctuation u′ < 0 induces a scalar fluctuation of θ ′ < 0 because ∂〈θ〉/∂x < 0 there
(figure 3f and the sketch in figure 24a). These correlations result in θ ′u′ > 0 and
−θ ′w′ < 0 above the windward face of the wave crest, as shown in figures 18(c)
and 19(c), respectively.

Similar to case W25C2, a quadrant-based conditional average can be done for case
W25C14 to educe a statistical description of the correlation between vortical structures
and scalar fluxes. As shown in figure 31 in the appendix C, in case W25C14 the
positive vertical scalar flux −θ ′w′ above the leeward face is mainly due to the Q2 and
Q4 events, while the negative vertical scalar flux above the windward face is mainly
due to the Q1 and Q3 events. This result is consistent with the direct observation of
the instantaneous flow and scalar fields shown in figure 23. Based on these wave-phase
preferences, Q2 and Q4 events are conditionally sampled above the leeward face, and
Q1 and Q3 events are conditionally sampled above the windward face. The specific
locations where quadrant events detectors are applied are marked in figure 31.

Figure 25 shows the conditionally averaged Q2 event above the leeward face of case
W25C14. Note that unlike in figures 21 and 22 where the vortices are visualized by
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FIGURE 25. (Colour online) Educed flow and scalar fields for case W25C14 with Sc=1.0
by conditional average of the Q2 events above the leeward face of the wave crest. The pair
of vortices are visualized by the iso-surfaces of |ωx/(u2

∗/ν)| = 0.05, with white colour for
ωx > 0 and black colour ωx < 0. Contours of θ ′/θ∗ are shown on the vertical plane across
the vortex pair. Contours of −θ ′w′/θ∗u∗ and vectors of (v′,w′) are shown in the zoom-in
view of the vertical plane, on which the thick white and black lines are the iso-contour
lines of ωx/(u2

∗/ν)= 0.05 and −0.05, respectively.

the λ2 method, in figure 25 the vortices are visualized using the iso-surfaces of |ωx|.
This is because in turbulence over intermediate and fast propagating surface waves
(as well as in oscillating flow over stationary waves), the strong relative oscillation
between the mean flow and the surface waves generates thin vortex sheets with
significant spanwise vorticity in the vicinity of the wave crests and troughs (e.g. Tseng
& Ferziger 2003; Yang & Balaras 2006; Yang & Shen 2009). In figure 23, those thin
vortex sheets have been removed to provide a clear visualization of other coherent
flow structures. However, because of their persistent presences at fixed wave phases
(i.e. above crests and troughs), these vortex sheets also appear in the conditionally
averaged field, with magnitudes larger than those of the vortices associated with the
quadrant events. As a result, the desired vortices would not be clearly seen when
the λ2 method is used for visualization. Instead, the iso-surfaces of |ωx| are good
alternative for visualization because the horizontal part of a quasi-streamwise vortex
above the leeward face in case W25C14 has a significant streamwise vorticity ωx.
Similarly, the iso-surfaces of |ωz| are used for visualizing the vertical part of the
vortex above the windward face. As shown in figure 25, the conditional average of
Q2 events exhibits a pair of counter-rotating streamwise vortices above the leeward
face, which induce upwelling motion (w′ > 0) between them and result in θ ′ < 0
and −θ ′w′ > 0. Note that in figure 25 the vortices appear in pairs because the Q2
events generated by vortices with ωx > 0 and ωx < 0 are both sampled and included
in the averaging process. In the instantaneous snapshots, these vortices usually appear
individually.

A similar quadrant-based conditional average can be applied for all the four
quadrants. Figure 26 shows the results for the four quadrants. Note that, as discussed
above, in figure 26(a,c) the vortices are visualized using the iso-surfaces of |ωz|, while
in figure 26(b,d) the vortices are visualized based on |ωx|. For all the four quadrants
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FIGURE 26. (Colour online) Side view of the educed flow and scalar fields for case
W25C14 with Sc = 1.0 by conditional average based on the four different quadrants of
〈−θ ′w′〉: (a) Q1 (θ ′ > 0,w′ > 0) events above the windward face; (b) Q2 (θ ′ < 0,w′ > 0)
events above the leeward face; (c) Q3 (θ ′<0,w′<0) events above the windward face; and
(d) Q4 (θ ′ > 0, w′ < 0) events above the leeward face. In the figure, the colour contours
are for −θ ′w′/θ∗u∗ on the (x, z)-plane across the centre of the educed field. In each
panel, the vortical structures are represented by the iso-surfaces of (a) ωz/(u2

∗/ν)=−0.05,
(b) ωx/(u2

∗/ν) = 0.05, (c) ωz/(u2
∗/ν) = 0.05, and (d) ωx/(u2

∗/ν) = −0.05, respectively. In
particular, light colour iso-surfaces correspond to positive vorticities (i.e. ωx > 0 or ωz> 0)
and dark colour ones correspond to negative vorticities (i.e. ωx < 0 or ωz < 0).

the educed vortices appear in pair, but only the ones in front of the central (x, z)-plane
of the averaged field are shown in figure 26. Both the conditionally averaged vortices
and the scalar flux fields agree with the observation of the instantaneous snapshot in
figure 23 and the phase-averaged scalar flux contours in figures 19(c) and 31.

It should be noted that the characteristics of the vortical structures may vary
with the Reynolds number. The results presented in § 4.6 are based on DNS with
a Reynolds number lower than that in a real marine wind condition. Therefore,
caution should be taken when interpreting the vortical structures reported in this DNS
study and linking them to those in the more realistic field condition. Nevertheless,
the vortical structures found in the current DNS as well as their correlations with
the distribution of scalar flux still provide useful insights for explaining the flow
structures over progressive waves on a laboratory scale such as the recent experiment
by Buckley & Veron (2016), in which they observed negative Reynolds stress above
the windward face of air flow over fast propagating surface waves similar to the
results obtained from the current DNS (see figures 19, 26 and 31).

5. Conclusions
Scalar transport in air turbulence over progressive surface waves plays an important

role in air–sea interaction. The presence of progressive waves at the sea surface
imposes great challenges to modelling the turbulent flow and scalar transport above
the waves. To tackle this complex problem, in this study a wave boundary-fitted
DNS turbulence solver previously developed by Yang & Shen (2011a) is employed,
and is further expanded by including a scalar transport solver also based on the
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boundary-fitted computational grid system. This expanded DNS model is shown to be
able to capture the details of the complex scalar transport phenomena in the vicinity
of the wave surface.

Using the DNS, the effects of surface wave motions on the scalar transport are
studied in detail. In particular, three representative wave ages (i.e. the wave phase
speed normalized by the wind friction velocity) are considered, representing the slow,
intermediate and fast wave conditions, respectively. Statistical analyses of the DNS
data show a strong wave phase dependence in the distributions of scalar concentration,
scalar variance, turbulent scalar fluxes, and local Sherwood number along the wave
surface. Comparison of the statistics among different wave conditions also reveals a
significant effect of the wave age on the scalar transport.

The wave age effect is also pronounced in the time and plane average of these
quantities, suggesting the importance of including the surface wave effect in models
that cannot directly capture the wave-phase-induced disturbance. In particular, the
vertical profiles of the time- and plane-averaged scalar for various wave conditions
exhibit similar structures to those found in turbulence over a flat wall, i.e. a linear
profile in the near-surface viscous sublayer (z+ < 5 in wall unit) and a logarithmic
profile in the displaced log-law region (50 < z+ < 150). However, the von Kármán
constant and the effective wave surface roughness for the mean scalar profile exhibit
considerable variation with the wave age. The effect of the Schmidt number on the
time and plane average of scalar is also quantified, which is found to be similar to
that in flat-wall turbulence.

Moreover, the profiles of the root-mean-square scalar fluctuation and the horizontal
scalar flux exhibit good scaling behaviours in the viscous sublayer that agree with
the scaling laws previously reported for flat-wall turbulence, but considerable wave-
induced variation is found in the viscous wall region above the sublayer (5< z+< 50).
In addition, the profiles of the vertical scalar flux in the viscous sublayer over surface
waves exhibit considerable discrepancies from the reported scaling law for the flat-
wall turbulence. A close look at the two-dimensional contours of the phase-averaged
vertical scalar flux indicates that the discrepancy is caused by a negative vertical flux
region above the windward face of the wave crest, especially in the intermediate and
fast wave cases.

Detailed analyses show that the instantaneous scalar fluctuations and fluxes are
highly correlated with the coherent vortical structures in the turbulence above the
wave surface, which exhibit clear wave-dependent characteristics in terms of their
shapes and preferential locations. In particular, the characteristic vortices vary from
quasi-streamwise (above windward face) and reversed horseshoe (above trough)
shapes in the slow wave case, to vertically bent vortices over wave crests in the
intermediate and fast wave cases. Direct observation of the instantaneous snapshots
as well as quadrant-based conditional average analysis indicates that the wave age
dependence of the wave-correlated scalar variance and flux distributions is caused by
the combined effects of the characteristic vortices, their preferential locations, and the
local gradient of the scalar concentration in the vicinity of these vortices.

It should be noted that in real open-sea conditions, the wind-generated waves
usually have a broadband spectrum, with short waves steeper and propagating slower
than long waves. Certain wave modes may also have an oblique angle relative to
main wind direction. These effects are not considered in the current DNS study with
a canonical configuration, and should be investigated in future studies.
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Appendix A. Validation with flat-wall case
To validate the DNS flow and scalar solvers, a series of test cases for turbulent

Couette flows with a flat bottom boundary are performed. In particular, three different
Reynolds numbers Re∗=u∗δ/ν=180, 283, and 455 are considered, where δ is the half
domain height. For each Reynolds number, four different Schmidt numbers, Sc= 0.4,
0.71, 1.0, and 3.0, are considered. These DNS results are compared with experimental
and numerical results collected from the literature.

Figure 27 shows the profiles of mean streamwise velocity u+ and velocity
fluctuation r.m.s. (u′+rms, v

′+
rms, w′+rms). The current DNS results agree well with the

experimental and DNS results in the literature for turbulent Couette flows and channel
flows. In figure 27(a), the mean velocity profile obeys a linear law of u+ = z+ in the
viscous sublayer at z+ < 5, and a logarithmic law of u+ = (1/0.41) ln(z+) + 5.2 in
the log-law region at z+ > 30. In figure 27(b), the velocity fluctuation r.m.s. exhibits
anisotropy, with the magnitude of u′+rms larger than the other two components. Note
that in turbulent Couette flow the vertical gradient of the mean velocity remains finite
so that the velocity fluctuations reach a plateau towards the centre of the channel
and remain anisotropic, while in a turbulent channel flow the streamwise velocity
fluctuation r.m.s. magnitude reduces more significantly towards the centre of the
channel (Debusschere & Rutland 2004). Therefore, in figure 27(b) only the results
for turbulent Couette flows in the literature are plotted.

Figure 28 shows the profiles of mean scalar θ
+

and scalar fluctuation r.m.s. θ ′
+
rms.

Similar to the mean velocity, the profiles of θ
+

also exhibit a linear profile in the
viscous sublayer and a logarithmic profile in the log-law region. The DNS results at
different Re∗ show only very small differences in θ

+
. The change of Schmidt number

has a more significant effect, with θ
+

increasing as Sc increases. By compiling a
collection of experimental data, Kader (1981) found that the near-wall linear profile
of the mean scalar follows

θ
+ = Sc z+, (A 1)

and the log-law profile follows

θ
+ = 1

κθ
ln(z+)+ Bθ(Sc), (A 2)

where κθ = 0.47 and

Bθ(Sc)= (3.84Sc1/3 − 1.3)2 + 2.12 ln(Sc). (A 3)

As shown in figure 28(a), the mean scalar profiles for various Re∗ and Sc obtained
from the current DNS agree well with the scaling laws given by (A 1)–(A 3) in the
corresponding linear and logarithmic regions. Similarly, the profiles of θ ′

+
rms also agree

well with the previous DNS result from Debusschere & Rutland (2004) and the linear
scaling law found by Antonia & Kim (1991) and Kawamura et al. (1998).
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FIGURE 27. (Colour online) Profiles of (a) mean streamwise velocity u+ and (b) velocity
fluctuation r.m.s. (u′+rms, v

′+
rms, w′+rms) in turbulent flows over a flat boundary. Experimental

data are denoted by solid symbols:u, channel flow at Re∗= 142 from Eckelmann (1974)
(modified by Kim et al. 1987); +, Couette flow at Re∗ = 82 from Aydin & Leutheusser
(1991); ×, Couette flow at Re∗= 134 from Aydin & Leutheusser (1991);c, Couette flow
at Re∗ = 434 from El Telbany & Reynolds (1982). DNS results are denoted by lines:
– – –, channel flow at Re∗=180 from Kim et al. (1987); — · —, channel flow at Re∗=180
from Moser, Kim & Mansour (1999); — · · —, channel flow at Re∗ = 395 from Moser
et al. (1999); · · · , channel flow at Re∗ = 590 from Moser et al. (1999); – –, Couette
flow at Re∗ = 120 from Sullivan et al. (2000); ——, Couette flow at Re∗ = 157 from
Papavassiliou & Hanratty (1997). The current DNS results of Couette flows are denoted
by open symbols:@, Re∗ = 180;A, Re∗ = 283;6, Re∗ = 445. In (a), the reference linear
profile u+= z+ and logarithmic profile u+= (1/0.41) ln(z+)+ 5.2 are denoted by thin solid
lines.

Appendix B. Averaging on ζ -plane versus on z-plane

In the triple decomposition approach used for analyzing the DNS results (see
equation (4.1)), the mean velocity and scalar are calculated by averaging on the
planes of constant ζ , which is defined by the grid algebraic mapping equation (2.12).
As shown in figure 29(a), the grid lines of constant ζ are nearly parallel to the wave
surface near the lower boundary of the simulation domain. Thus, computing the mean
quantities along ζ -planes allows us to obtain the correct linear profiles in the thin
viscous sublayer, which is within 5 wall units above the curved wave surface. Such
a thin viscous sublayer cannot be captured if the average is done along z-planes, as
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FIGURE 28. (Colour online) Profiles of (a) mean scalar θ
+

and (b) scalar fluctuation
r.m.s. θ ′

+
rms in turbulent flows over a flat boundary. The DNS results for three different

Reynolds numbers are shown: – – –, Re∗ = 180; — · —, Re∗ = 283; and · · · , Re∗ = 445.
For each Reynolds number, four different Schmidt numbers are shown, i.e. Sc = 0.4,
0.71, 1.0 and 3.0. In (a), the reference linear profile θ

+ = Sc z+ and logarithmic profile
θ
+= (1/κθ ) ln(z+)+Bθ (Sc) suggested by Kader (1981) are denoted by thin solid lines for

each Schmidt number, where κθ = 0.47 and Bθ (Sc)= (3.84Sc1/3 − 1.3)2 + 2.12 ln(Sc). In
(b), the linear reference profile θ ′

+
rms = 0.4Sc z+ for each corresponding Sc is denoted by

thin solid lines, and the DNS result from Debusschere & Rutland (2004) for Re∗ = 160
and Sc= 0.7 is denoted by — · · —.

it does not have a valid definition in the flow regions lower than the elevation of the
wave crest as shown in figure 29(b).

Overall, the mean profiles based on ζ -plane averaging merge to the corresponding
mean profiles based on z-plane averaging because the ζ -plane becomes flatter towards
higher elevation (see the grid lines in figure 29a). Near the wave surface, z-plane
averaging yields lower values than the ζ -plane averaging due to the wave-induced
distortion. We remark that for a flat-wall turbulent boundary layer, the log-law region
is typically defined to be within 30< z+< 0.3δ+, where δ+ is the half-domain height
in wall units (see table 7.1 in Pope 2000). Note that the wave crest in the current
study has a height of η+crest = 17.7 and the averaged half-domain height is δ+ = 445,
therefore the log-law region in the current DNS should be defined as 50< z+ < 150
considering the additional vertical displacement of the mean profile by the wave crest.
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FIGURE 29. (Colour online) Comparison of ζ -plane averaging with z-plane averaging.
Panel (a) shows the boundary-fitted computational grid used in the current DNS, with
each of the horizontal grid lines corresponding to a constant ζ in the computational space
(ξ , ψ, ζ , τ ). For illustration purposes, the grid lines on a (x, z)-plane are plotted for every
two actual grids used in the simulation. Panel (b) shows the comparison of the mean
streamwise velocity u+ obtained by averaging on planes of constant ζ (open symbols)
versus on planes of constant z (lines):E and ——, S25 (c/u∗ = 0);@ and – – –, W25C2
(c/u∗ = 2);A and — · —, W25C14 (c/u∗ = 14); C and — · · —, W25C25 (c/u∗ = 25).
When evaluating the log-law profile, the mean velocity within 50< z+ < 150 is used, as
marked by the two dotted lines.

Figure 29(b) shows that the mean profiles obtained by ζ -plane averaging and z-plane
averaging agree very well in the log-law region. The above analyses show that it is
an appropriate choice to compute the mean quantities based on the ζ -plane averaging
for the statistical analyses performed in this study.

Appendix C. Conditional average based on quadrants of scalar flux
The vertical turbulent flux of the scalar, 〈−θ ′w′〉, can be decomposed into four parts

based on the quadrants in the (θ ′,w′) space: Q1 (θ ′ > 0,w′ > 0), Q2 (θ ′ < 0,w′ > 0),
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FIGURE 30. (Colour online) Decomposed vertical scalar flux 〈−θ ′w′〉 for case W25C2
with Sc= 1.0 based on the four quadrants: (a) Q1 (θ ′ > 0, w′ > 0); (b) Q2 (θ ′ < 0, w′ >
0); (c) Q3 (θ ′ < 0, w′ < 0); and (d) Q4 (θ ′ > 0, w′ < 0). In (b) and (d), each of the
corresponding detection position for quadrant-based conditional sampling is chosen to be
the grid point at the maximum of the corresponding quadrant and is marked by the cross
symbol. In case W25C2, the Q1 and Q3 events contribute very little to 〈−θ ′w′〉, thus are
not considered in the quadrant-based conditional sampling analysis.

Q3 (θ ′< 0,w′< 0) and Q4 (θ ′> 0,w′< 0). Figures 30 and 31 show the decomposed
turbulent scalar flux 〈−θ ′w′〉 for cases W25C2 and W25C14, respectively. In case
W25C2, quadrants Q2 and Q4 make the greatest contributions to the total flux, while
the contributions from Q1 and Q3 are significantly smaller. In case W25C14, the four
quadrants make comparable contributions to the total flux, with Q1 and Q3 for the
negative flux region above the windward face and Q2 and Q4 for the positive flux
region above the leeward face. The results for case W25C25 are very similar to those
in case W25C14, and are thus not shown here due to space limitations.

For the quadrant-based conditional average shown in § 4.6, samples are taken from
the instantaneous snapshots of the velocity and scalar fields using the quadrant events
detector (Kim & Moin 1986; Yang & Shen 2009),

Di(y, t; xs, zs)=
1, if (θ ′,w′) ∈Qi and

−θ ′w′
〈−θ ′w′〉 > 2,

0, otherwise.
(C 1)

This detection function is applied to a number of instantaneous snapshots at different
time t. Samples for quadrant Qi are taken if Di(y, t; xs, zs)= 1. Moreover, the detection
function scans over all the y for each snapshot, but uses fixed values for (xs, zs) for
each quadrant event so that samples are taken at a consistent location relative to
the wave phase. The (xs, zs) location for each quadrant is chosen to be the grid
point that has the maximum of the contribution to 〈−θ ′w′〉 due to the corresponding
quadrant, and the specific locations for cases W25C2 and W25C14 are marked in
figures 30 and 31, respectively. For each case, 400 instantaneous snapshots of the
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FIGURE 31. (Colour online) Decomposed vertical scalar flux 〈−θ ′w′〉 for case W25C14
with Sc= 1.0 based on the four quadrants: (a) Q1 (θ ′> 0,w′> 0); (b) Q2 (θ ′< 0,w′> 0);
(c) Q3 (θ ′ < 0, w′ < 0); and (d) Q4 (θ ′ > 0, w′ < 0). In each panel, the corresponding
detection position for quadrant-based conditional sampling is chosen to be the grid point
at the maximum of the corresponding quadrant and is marked by the cross symbol.

full three-dimensional velocity and scalar fields are used for conditional average,
with each snapshot consisting of four wavelengths. For the analysis reported in this
paper, in (C 1) the samples are high-pass filtered by the criterion −θ ′w′/〈−θ ′w′〉> 2,
i.e. samples are taken only when the magnitude of the detected instantaneous vertical
flux is at least twice of the phase-averaged flux at the detection location. In addition
to the threshold of 2, other values have also been tested for the high-pass filter
criterion (e.g. 0.5, 1, 4 and 8), but insignificant differences were found in the educed
flow and scalar fields, suggesting that the conditional average criterion used in the
present analysis is representative.
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