Publications

Google Scholar record: link
Web of Science ResearcherID record: link

JOURNAL ARTICLES

  1. Gharaati, M., Xiao, S., Martinez-Tossas, L.A., Araya, D.B. & Yang, D. (2024), “Large-eddy simulations of turbulent wake flows behind helical- and straight-bladed vertical axis wind turbines rotating at low tip speed ratios,” Physical Review Fluids, vol. 9, 074603. (journal link)
  2. Gharaati, M., Wei, N.J., Dabiri, J.O., Martinez-Tossas, L.A. & Yang, D. (2023), “Large-eddy simulations of turbulent flows in arrays of helical- and straight-bladed vertical-axis wind turbines,” Journal of Renewable and Sustainable Energy, vol. 15(6), 063309 (featured article). (journal link)
  3. Zafar, A., Yang, D. & Chen, G. (2023), “Extract and characterize hairpin vortices in turbulent flows,” IEEE Transactions on Visualization and Computer Graphics, DOI: 10.1109/TVCG.2023.3326603. (journal link)
  4. Gharaati, M., Xiao, S., Wei, N.J., Martinez-Tossas, L.A., Dabiri, J.O. & Yang, D. (2022), “Large-eddy simulation of helical- and straight-bladed vertical-axis wind turbines in boundary layer turbulence,” Journal of Renewable and Sustainable Energy, vol. 14(5), 053301 (featured article). (journal link)
  5. Xiao, S., Peng, C. & Yang, D. (2021), “Large-eddy simulation of bubble plume in stratified crossflow,” Physical Review Fluids, vol. 6, 044613. (pdf) (journal link)
  6. Boufadel, M., Socolofsky, S., Katz, J., Yang, D., Daskiran, C. & Dewar, W. (2020), “A review on multiphase underwater jets and plumes: droplets, hydrodynamics, and chemistry,” Reviews of Geophysics, vol. 58, e2020RG000703. (pdf) (journal link)
  7. Peng, C., Xiao, S. & Yang, D. (2020), “Large-eddy simulation model for the effect of gas bubble dissolution on the dynamics of hydrocarbon plume from deep-water blowout,” Journal of Geophysical Research – Oceans, vol. 125, e2019JC016037. (pdf) (journal link)
  8. D’Asaro, E.A., Carlson, D.F., Chamecki, M., Harcourt, R., Haus, B., Fox-Kemper, B., Molemaker, M.J., Poje, A. & Yang, D. (2020), “Advances in Observing and Understanding Small-Scale Open Ocean Circulation During the Gulf of Mexico Research Initiative Era,” Frontiers in Marine Science, vol. 7, 349. (pdf) (journal link)
  9. Xiao, S. & Yang, D. (2020), “Effect of oil plumes on upper-ocean radiative transfer – a numerical study,” Ocean Modelling, vol. 145, 101522. (pdf) (journal link)
  10. Chamecki, M., Chor, T., Yang, D. & Meneveau, C. (2019), “Material transport in the ocean mixed layer: recent developments enabled by large eddy simulations,” Reviews of Geophysics, vol. 57, pp.1338–1371. (pdf) (journal link)
  11. Aiyer, A.K., Yang, D., Chamecki, M. & Meneveau, C. (2019), “A population balance model for large eddy simulation of polydisperse droplet evolution,” Journal of Fluid Mechanics, vol. 878, pp.700–739. (pdf) (journal link)
  12. Li, M., Zhao, Z., Pandya, Y., Iungo, G.V., & Yang, D. (2019), “Large-eddy simulations of oil droplet aerosol transport in the marine atmospheric boundary layer,” Atmosphere, vol. 10, 459. (pdf) (journal link)
  13. Li, M. & Yang, D. (2019), “Direct numerical simulation and statistical analysis of stress-driven turbulent Couette flow with a free-slip boundary,” Physics of Fluids, vol. 31, 085113. (pdf) (journal link)
  14. Xiao, S. & Yang, D. (2019), “Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines,” Energies, vol. 12, 1246. (pdf) (journal link)
  15. Chor, T., Yang, D., Meneveau, C. & Chamecki, M. (2018), “A Turbulence Velocity Scale for Predicting the Fate of Buoyant Materials in the Oceanic Mixed Layer,” Geophysical Research Letters, vol. 45, pp.11,817–11,826. (pdf) (journal link)
  16. Chen, B., Yang, D., Meneveau, C. & Chamecki, M. (2018), “Numerical study of the effects of chemical dispersant on oil transport from an idealized underwater blowout,” Physical Review Fluids, vol. 3, 083801. (pdf) (journal link)
  17. Chor, T., Yang, D., Meneveau, C., & Chamecki, M., (2018), “Preferential concentration of noninertial buoyant particles in the ocean mixed layer under free convection,” Physical Review Fluids, vol. 3, 064501. (pdf) (journal link)
  18. Ramudu, E., Gelderloos, R., Yang, D., Meneveau, C. & Gnanadesikan, A. (2018), “Large eddy simulation of heat entrainment under Arctic sea ice,” Journal of Geophysical Research – Oceans, vol. 123, pp.287–304. (pdf) (journal link)
  19. Banerjee, T., Vercauteren, N., Muste, M. & Yang, D. (2018), “Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies,” Agricultural and Forest Meteorology, vol. 255, pp.57–67. (pdf) (journal link)
  20. Yang, D. & Shen, L. (2017), “Direct numerical simulation of scalar transport in turbulent flows over progressive surface waves,” Journal of Fluid Mechanics, vol. 819, pp.58–103. (pdf for pp.1-26, pdf for pp.27-46) (journal link)
  21. Yang, D., Chen, B., Socolofsky, S.A., Chamecki, M. & Meneveau, C. (2016), “Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow,” Journal of Fluid Mechanics, vol. 794, pp.798–833. (pdf) (journal link)
  22. Chen, B., Yang, D., Meneveau, C. & Chamecki, M. (2016), “Effects of swell on transport and dispersion of oil plumes within the ocean mixed layer,” Journal of Geophysical Research – Oceans, vol. 121, pp.3564–3578. (pdf) (journal link)
  23. Chen, B., Yang, D., Meneveau, C. & Chamecki, M. (2016), “ENDLESS: An extended nonperiodic domain large-eddy simulation approach for scalar plumes,” Ocean Modelling, vol. 101, pp.121–132. (pdf) (journal link)
  24. Socolofsky, S.A., Adams, E.E., Paris, C. & Yang, D. (2016), “How do oil, gas, and water interact near a subsea blowout?” Oceanography, vol. 29, pp.64–75. (pdf) (journal link)
  25. Xie, S., Yang, D., Liu, Y. & Shen, L. (2016), “Simulation-based study of wind load on semi-submersed object in ocean wavefield,” Physics of Fluids, vol. 28, 015106. (pdf) (journal link)
  26. Yang, D., Chen, B., Chamecki, M. & Meneveau, C. (2015), “Oil plumes and dispersion in Langmuir, upper-ocean turbulence: large-eddy simulations and K-profile parameterization,” Journal of Geophysical Research – Oceans, vol. 120, pp.4729–4759. (pdf) (journal link)
  27. Yang, D., Meneveau, C. & Shen, L. (2014), “Effect of swells on offshore wind energy harvesting – a large-eddy simulation based study,” Renewable Energy, vol. 70, pp.11–23. (pdf) (journal link)
  28. Yang, D., Chamecki, M. & Meneveau, C. (2014), “Inhibition of oil plume dilution due to Langmuir ocean circulation,” Geophysical Research Letters, vol. 41, pp.1632–1638. (pdf) (journal link)
  29. Yang, D., Meneveau, C. & Shen, L. (2014), “Large-eddy simulation of offshore wind farm,” Physics of Fluids, vol. 26, 025101. (pdf) (journal link)
  30. Yang, D., Meneveau, C. & Shen, L. (2013), “Dynamic modeling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield,” Journal of Fluid Mechanics, vol. 726, pp.62–99. (pdf) (journal link)
  31. Yang, D., Shen, L. & Meneveau, C. (2013), “An assessment of dynamic subgrid-scale sea-surface roughness models,” Flow, Turbulence and Combustion, vol. 91, pp.541–563. (pdf) (journal link)
  32. Dickey, T. et al. (2012), “Introduction to special section on Recent Advances in the Study of Optical Variability in the Near-Surface and Upper Ocean,” Journal of Geophysical Research – Oceans, Vol. 117, C00H20. (pdf) (journal link)
  33. Yang, D. & Shen, L. (2011), “Simulation of viscous flows with undulatory boundaries: Part II. Coupling with other solvers for two-fluid computations,” Journal of Computational Physics, Vol. 230, pp.5510–5531. (pdf) (journal link)
  34. Yang, D. & Shen, L. (2011), “Simulation of viscous flows with undulatory boundaries: Part I. Basic solver,” Journal of Computational Physics, Vol. 230, pp.5488–5509. (pdf) (journal link)
  35. Liu, Y., Yang, D., Guo, X. & Shen, L. (2010), “Numerical study of pressure forcing of wind on dynamically evolving water waves,” Physics of Fluids, Vol. 22, 041704. (pdf) (journal link)
  36. Yang, D. & Shen, L. (2010), “Direct-simulation-based study of turbulent flow over various waving boundaries,” Journal of Fluid Mechanics, Vol. 650, pp.131–180. (pdf) (journal link)
  37. Yang, D. & Shen, L. (2009), “Characteristics of coherent vortical structures in turbulent flows over progressive surface waves,” Physics of Fluids, Vol. 21, 125106. (pdf) (journal link)

CONFERENCE PROCEEDINGS

  1. Katz, J., Beegle-Krause, C.J., Boufadel, M., Chamecki, C., John, V., Koehler, K., Prosperetti, A., Sheng, J., Steve, K. & Yang, D. (2021), “Small scale physical and bio-chemical processes affecting the transport of oil after a spill,” in International Oil Spill Conference Proceedings, vol. 2021 (1), 688177. (journal link)
  2. Shen, L., Xie, S., Yang, D. & Liu, Y. (2014), “Wind-and-wave simulations with dynamic modeling for ship hydrodynamics applications,” in Proceedings of the 30th Symposium on Naval Hydrodynamics. (pdf)
  3. Yang, D., Meneveau, C. & Shen, L. (2013), “Large-eddy simulation based study of offshore wind turbine array boundary layers,” in Proceedings of the 2013 International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes. (pdf)
  4. Liu, Y., Guo, X., Yang, D. & Shen, L. (2010), “Numerical simulation of strong free-surface turbulence for mechanistic study,” in Proceedings of the 28th Symposium on Naval Hydrodynamics. (pdf)
  5. Xie, S., Liu, Y., Yang, D., Guo, X. & Shen, L. (2010), “Multiscale simulation of wind–wave–structure interaction,” in Proceedings of the 28th Symposium on Naval Hydrodynamics. (pdf)
  6. Guo, X., Yang, D., Liu, Y. & Shen, L. (2010), “Mechanistic study of upper ocean turbulence interacting with surface waves,” in Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. (pdf)
  7. Liu, Y., Yang, D., Guo, X. & Shen, L. (2010), “Multi-scale modeling of wind–wave interaction in the presence of offshore structures for renewable energy applications,” in Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. (pdf)
  8. Shen, L., Yang, D. & Yue, D.K.P. (2008), “Coupled wind-wave prediction for ship motion,” in Proceedings of the 27th Symposium on Naval Hydrodynamics. (pdf)